scholarly journals Modulation of early host innate immune response by a Fowlpox virus (FWPV) lateral body protein

2020 ◽  
Author(s):  
Efstathios S Giotis ◽  
Stephen M Laidlaw ◽  
Susanna R Bidgood ◽  
David Albrecht ◽  
Jemima J Burden ◽  
...  

AbstractThe avian pathogen, fowlpox virus (FWPV) has been successfully used as vaccine vector in poultry and humans but relatively little is known about its ability to modulate host antiviral immune responses in these hosts, which are replication permissive and non-permissive, respectively. FWPV is highly resistant to avian type I interferon (IFN) and able to completely block the host IFN-response. Microarray screening of host IFN-regulated gene expression in cells infected with 59 different, non-essential FWPV gene knock-out mutants revealed that FPV184 confers immunomodulatory capacity. We report that FPV184-knockout virus (FWPVΔ184) induces the cellular IFN response as early as 2 hours post-infection. The wild-type, uninduced phenotype can be rescued by transient expression of FPV184 in FWPVΔ184-infected cells. Ectopic expression of FPV184 inhibited polyI:C activation of the chicken IFN-β promoter and IFN-α activation of the chicken Mx promoter. Confocal and correlative super-resolution light and electron microscopy demonstrated that FPV184 has a functional nuclear localisation signal domain and is packaged in the lateral bodies of the virions. Taken together, these results provide a paradigm for a late poxvirus structural protein packaged in the lateral bodies and capable of supressing IFN induction early during the next round of infection.

Biomedicines ◽  
2020 ◽  
Vol 8 (12) ◽  
pp. 634
Author(s):  
Efstathios S. Giotis ◽  
Stephen M. Laidlaw ◽  
Susanna R. Bidgood ◽  
David Albrecht ◽  
Jemima J. Burden ◽  
...  

The avian pathogen fowlpox virus (FWPV) has been successfully used as a vaccine vector in poultry and humans, but relatively little is known about its ability to modulate host antiviral immune responses in these hosts, which are replication-permissive and nonpermissive, respectively. FWPV is highly resistant to avian type I interferon (IFN) and able to completely block the host IFN-response. Microarray screening of host IFN-regulated gene expression in cells infected with 59 different, nonessential FWPV gene knockout mutants revealed that FPV184 confers immunomodulatory capacity. We report that the FPV184-knockout virus (FWPVΔ184) induces the cellular IFN response as early as 2 h postinfection. The wild-type, uninduced phenotype can be rescued by transient expression of FPV184 in FWPVΔ184-infected cells. Ectopic expression of FPV184 inhibited polyI:C activation of the chicken IFN-β promoter and IFN-α activation of the chicken Mx1 promoter. Confocal and correlative super-resolution light and electron microscopy demonstrated that FPV184 has a functional nuclear localisation signal domain and is packaged in the lateral bodies of the virions. Taken together, these results provide a paradigm for a late poxvirus structural protein packaged in the lateral bodies, capable of suppressing IFN induction early during the next round of infection.


2021 ◽  
Vol 22 (4) ◽  
pp. 2216
Author(s):  
Cheng-Chia Yu ◽  
Yi-Wen Liao ◽  
Pei-Ling Hsieh ◽  
Yu-Chao Chang

Oral submucous fibrosis (OSF) is known as a potentially malignant disorder, which may result from chemical irritation due to areca nuts (such as arecoline). Emerging evidence suggests that fibrogenesis and carcinogenesis are regulated by the interaction of long noncoding RNAs (lncRNAs) and microRNAs. Among these regulators, profibrotic lncRNA H19 has been found to be overexpressed in several fibrosis diseases. Here, we examined the expression of H19 in OSF specimens and its functional role in fibrotic buccal mucosal fibroblasts (fBMFs). Our results indicate that the aberrantly overexpressed H19 contributed to higher myofibroblast activities, such as collagen gel contractility and migration ability. We also demonstrated that H19 interacted with miR-29b, which suppressed the direct binding of miR-29b to the 3′-untranslated region of type I collagen (COL1A1). We showed that ectopic expression of miR-29b ameliorated various myofibroblast phenotypes and the expression of α-smooth muscle actin (α-SMA), COL1A1, and fibronectin (FN1) in fBMFs. In OSF tissues, we found that the expression of miR-29b was downregulated and there was a negative correlation between miR-29b and these fibrosis markers. Lastly, we demonstrate that arecoline stimulated the upregulation of H19 through the transforming growth factor (TGF)-β pathway. Altogether, this study suggests that increased TGF-β secretion following areca nut chewing may induce the upregulation of H19, which serves as a natural sponge for miR-29b and impedes its antifibrotic effects.


Genetics ◽  
2003 ◽  
Vol 164 (1) ◽  
pp. 235-245
Author(s):  
Daimark Bennett ◽  
Balázs Szöőr ◽  
Sascha Gross ◽  
Natalia Vereshchagina ◽  
Luke Alphey

Abstract We have identified two proteins that bind with high specificity to type 1 serine/threonine protein phosphatase (PP1) and have exploited their inhibitory properties to develop an efficient and flexible strategy for conditional inactivation of PP1 in vivo. We show that modest overexpression of Drosophila homologs of I-2 and NIPP1 (I-2Dm and NIPP1Dm) reduces the level of PP1 activity and phenotypically resembles known PP1 mutants. These phenotypes, which include lethality, abnormal mitotic figures, and defects in muscle development, are suppressed by coexpression of PP1, indicating that the effect is due specifically to loss of PP1 activity. Reactivation of I-2Dm:PP1c complexes suggests that inhibition of PP1 activity in vivo does not result in a compensating increase in synthesis of active PP1. PP1 mutants enhance the wing overgrowth phenotype caused by ectopic expression of the type II TGFβ superfamily signaling receptor Punt. Using I-2Dm, which has a less severe effect than NIPP1Dm, we show that lowering the level of PP1 activity specifically in cells overexpressing Punt is sufficient for wing overgrowth and that the interaction between PP1 and Punt requires the type I receptor Thick-veins (Tkv) but is not strongly sensitive to the level of the ligand, Decapentaplegic (Dpp), nor to that of the other type I receptors. This is consistent with a role for PP1 in antagonizing Punt by preventing phosphorylation of Tkv. These studies demonstrate that inhibitors of PP1 can be used in a tissue- and developmental-specific manner to examine the developmental roles of PP1.


2012 ◽  
Vol 11 (3) ◽  
pp. 292-301 ◽  
Author(s):  
David J. Woessner ◽  
Scott C. Dawson

ABSTRACTGiardiahas unique microtubule structures, including the ventral disc, the primary organelle of attachment to the host, and the median body, a structure of undefined function. During attachment, the ventral disc has a domed conformation and enablesGiardiato attach to the host intestinal epithelia within seconds. The mechanism of attachment via the ventral disc and the overall structure, function, and assembly of the ventral disc are not well understood. Our recent proteomic analysis of the ventral disc indicated that the median body protein (MBP), previously reported to localize exclusively to the median body, was primarily localized to the ventral disc. Using high-resolution light and electron microscopy, we confirm that the median body protein localizes primarily to the overlap zone of the ventral disc. The MBP also occasionally localized to the median body during prophase. To define the contribution of MBP to the ventral disc structure, we depleted MBP using an anti-MBP morpholino. We found that the ventral disc was no longer able to form properly and that the disc structure often had an aberrant nondomed or flattened horseshoe conformation. The ability of attached anti-MBP morpholino-treated trophozoites to withstand shear forces and normal forces was significantly decreased. Most notably, the plasma membrane contacts with the surface, including those of the bare area, were defective after the anti-MBP knockdown. To our knowledge, this is the first ventral disc protein whose depletion directly alters ventral disc structure, confirming that the domed ventral disc conformation is important for robust attachment.


2005 ◽  
Vol 16 (4) ◽  
pp. 1987-2002 ◽  
Author(s):  
Ulrich Valcourt ◽  
Marcin Kowanetz ◽  
Hideki Niimi ◽  
Carl-Henrik Heldin ◽  
Aristidis Moustakas

Epithelial-mesenchymal transition (EMT) contributes to normal tissue patterning and carcinoma invasiveness. We show that transforming growth factor (TGF)-β/activin members, but not bone morphogenetic protein (BMP) members, can induce EMT in normal human and mouse epithelial cells. EMT correlates with the ability of these ligands to induce growth arrest. Ectopic expression of all type I receptors of the TGF-β superfamily establishes that TGF-β but not BMP pathways can elicit EMT. Ectopic Smad2 or Smad3 together with Smad4 enhanced, whereas dominant-negative forms of Smad2, Smad3, or Smad4, and wild-type inhibitory Smad7, blocked TGF-β–induced EMT. Transcriptomic analysis of EMT kinetics identified novel TGF-β target genes with ligand-specific responses. Using a TGF-β type I receptor that cannot activate Smads nor induce EMT, we found that Smad signaling is critical for regulation of all tested gene targets during EMT. One such gene, Id2, whose expression is repressed by TGF-β1 but induced by BMP-7 is critical for regulation of at least one important myoepithelial marker, α-smooth muscle actin, during EMT. Thus, based on ligand-specific responsiveness and evolutionary conservation of the gene expression patterns, we begin deciphering a genetic network downstream of TGF-β and predict functional links to the control of cell proliferation and EMT.


2021 ◽  
Author(s):  
Raphaël Jami ◽  
Emilie Mérour ◽  
Julie Bernard ◽  
Annie Lamoureux ◽  
Jean K. Millet ◽  
...  

Salmonid alphavirus (SAV) is an atypical alphavirus, which has a considerable impact on salmon and trout farms. Unlike other alphaviruses such as the chikungunya virus, SAV is transmitted without an arthropod vector, and does not cause cell shut-off during infection. The mechanisms by which SAV escapes the host immune system remain unknown. By studying the role of SAV proteins on the RIG-I signaling cascade, the first line of defense of the immune system during infection, we demonstrated that non-structural protein 2 (nsP2) effectively blocks the induction of type I interferon (IFN). This inhibition, independent of the protease activity carried by nsP2, occurs downstream of IRF3 which is the transcription factor allowing the activation of the IFN promoter and its expression. The inhibitory effect of nsP2 on the RIG-I pathway depends on the localization of nsP2 in the host cell nucleus which is linked to two nuclear localization sequences (NLS) located in its C-terminal part. The C-terminal domain of nsP2 by itself is sufficient and necessary to block IFN induction. Mutation of the NLS of nsP2 is deleterious to the virus. Finally, nsP2 does not interact with IRF3, indicating that its action is possible through a targeted interaction within discrete areas of chromatin, as suggested by its punctate distribution observed in the nucleus. These results therefore demonstrate a major role for nsP2 in the control by SAV of the host cell’s innate immune response. Importance The global consumption of fish continues to rise and the future demand cannot be met by capture fisheries alone due to limited stocks of wild fish. Aquaculture is currently the world’s fastest growing food production sector with an annual growth rate of 6-8 %. Recurrent outbreaks of SAV result in significant economic losses with serious environmental consequences on wild stocks. While the clinical and pathological signs of SAV infection are fairly well known, the molecular mechanisms involved are poorly described. In the present study, we focus on the non-structural protein nsP2 and characterize a specific domain containing nuclear localization sequences that are critical for the inhibition of the host innate immune response mediated by the RIG-I pathway.


Development ◽  
1991 ◽  
Vol 111 (1) ◽  
pp. 181-190
Author(s):  
D.I. de Pomerai ◽  
W.K. Ip ◽  
M. McLaughlin ◽  
K.C. Perry

When chick embryo neutral retina (NR) cells are cultured for long periods in vitro, they undergo extensive transdifferentiation into lens and express the lens protein, delta crystallin. We now demonstrate that this process is accompanied by a change in the chromatin conformation of the delta-gene locus from DNAase1-resistant to DNAase1-sensitive in the nuclei of most cells. Transcripts hybridising to a delta probe are also much more prevalent among the in vitro transcription products from lens or transdifferentiated NR culture nuclei, as compared to nuclei from fresh NR tissue. Published evidence indicates that the chick delta 1 crystallin gene encodes the major structural protein of embryonic lens fibres, whereas the closely related delta 2 gene may encode the urea-cycle enzyme argininosuccinate lyase (ASL). Our present data lends further support to this view. Both immunodetectable delta-related protein(s) and ASL activity are present in fresh embryonic NR tissue, as well as in mouse and Rana liver, and in Rana lens. Our polyclonal anti-delta antibody also cross-reacts with a major constituent of commercial bovine ASL, of the same molecular size as chick delta crystallin. Immunoselection studies suggest that the ASL activity in chick embryonic NR is conferred mainly by the delta-related protein band. So-called ‘ectopic’ expression of delta crystallin in embryonic NR (and other tissues) may thus involve the delta 2/ASL gene, and could reflect some metabolic requirement for ASL activity.


Development ◽  
2000 ◽  
Vol 127 (13) ◽  
pp. 2917-2931 ◽  
Author(s):  
S. Faure ◽  
M.A. Lee ◽  
T. Keller ◽  
P. ten Dijke ◽  
M. Whitman

Transforming growth factor beta (TGFbeta) superfamily signaling has been implicated in patterning of the early Xenopus embryo. Upon ligand stimulation, TGFbeta receptors phosphorylate Smad proteins at carboxy-terminal SS(V/M)S consensus motifs. Smads 1/5/8, activated by bone morphogenetic protein (BMP) signaling, induce ventral mesoderm whereas Smad2, activated by activin-like ligands, induces dorsal mesoderm. Although ectopic expression studies are consistent with roles for TGFbeta signals in early Xenopus embryogenesis, when and where BMP and activin-like signaling pathways are active endogenously has not been directly examined. In this study, we investigate the temporal and spatial activation of TGFbeta superfamily signaling in early Xenopus development by using antibodies specific for the type I receptor-phosphorylated forms of Smad1/5/8 and Smad2. We find that Smad1/5/8 and two distinct isoforms of Smad2, full-length Smad2 and Smad2(delta)exon3, are phosphorylated in early embryos. Both Smad1/5/8 and Smad2/Smad2(delta)exon3 are activated after, but not before, the mid-blastula transition (MBT). Endogenous activation of Smad2/Smad2(delta)exon3 requires zygotic transcription, while Smad1/5/8 activation at MBT appears to involve transcription-independent regulation. We also find that the competence of embryonic cells to respond to TGF(delta) superfamily ligands is temporally regulated and may be a determinant of early patterning. Levels of phospho-Smad1/5/8 and of phospho-Smad2/Smad2(delta)exon3 are asymmetrically distributed across both the animal-vegetal and dorsoventral axes. The timing of the development of these asymmetries differs for phospho-Smad1/5/8 and for phospho-Smad2/Smad2(delta)exon3, and the spatial distribution of phosphorylation of each Smad changes dramatically as gastrulation begins. We discuss the implications of our results for endogenous functions of BMP and activin-like signals as candidate morphogens regulating primary germ layer formation and dorsoventral patterning of the early Xenopus embryo.


Development ◽  
1999 ◽  
Vol 126 (1) ◽  
pp. 181-190 ◽  
Author(s):  
M. Nikaido ◽  
M. Tada ◽  
H. Takeda ◽  
A. Kuroiwa ◽  
N. Ueno

It has been an intriguing problem whether the polypeptide growth factors belonging to the transforming growth factor-beta (TGF-beta) superfamily function as direct and long-range signaling molecules in pattern formation of the early embryo. In this study, we examined the mechanism of signal propagation of bone morphogenetic protein (BMP) in the ectodermal patterning of zebrafish embryos, in which BMP functions as an epidermal inducer and a neural inhibitor. To estimate the effective range of zbmp-2, we first performed whole-mount in situ hybridization analysis. The zbmp-2-expressing domain and the neuroectoderm, marked by otx-2 expression, were complementary, suggesting that BMP has a short-range effect in vivo. Moreover, mosaic experiments using a constitutively active form of a zebrafish BMP type I receptor (CA-BRIA) demonstrated that the cell-fate conversion, revealed by ectopic expression of gata-3 and repression of otx-2, occurred in a cell-autonomous manner, denying the involvement of the relay mechanism. We also found that zbmp-2 was induced cell autonomously within the transplanted cells in the host ectoderm, suggesting that BMP cannot influence even the neighboring cells. This result is consistent with the observation that there is no gap between the expression domains of zbmp-2 and otx-2. Taken together, we propose that, in ectodermal patterning, BMP exerts a direct and cell-autonomous effect to fate uncommitted ectodermal cells to become epidermis.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Dorothea Pinotsi ◽  
Simona Rodighiero ◽  
Silvia Campioni ◽  
Gabor Csucs

Abstract A number of new Correlative Light and Electron Microscopy approaches have been developed over the past years, offering the opportunity to combine the specificity and bio-compatibility of light microscopy with the high resolution achieved in electron microscopy. More recently, these approaches have taken one step further and also super-resolution light microscopy was combined with transmission or scanning electron microscopy. This combination usually requires moving the specimen between different imaging systems, an expensive set-up and relatively complicated imaging workflows. Here we present a way to overcome these difficulties by exploiting a commercially available wide-field fluorescence microscope integrated in the specimen chamber of a Scanning Electron Microscope (SEM) to perform correlative LM/EM studies. Super-resolution light microscopy was achieved by using a recently developed algorithm - the Super-Resolution Radial Fluctuations (SRRF) - to improve the resolution of diffraction limited fluorescent images. With this combination of hardware/software it is possible to obtain correlative super-resolution light and scanning electron microscopy images in an easy and fast way. The imaging workflow is described and demonstrated on fluorescently labelled amyloid fibrils, fibrillar protein aggregates linked to the onset of multiple neurodegenerative diseases, revealing information about their polymorphism.


Sign in / Sign up

Export Citation Format

Share Document