scholarly journals Innate Behavior Sequence Progression by Peptide-Mediated Interorgan Crosstalk

Author(s):  
Fabiana Heredia ◽  
Yanel Volonté ◽  
Joana Pereirinha ◽  
Magdalena Fernandez-Acosta ◽  
Andreia P. Casimiro ◽  
...  

Innate behaviors consist of a succession of genetically-hardwired motor and physiological subprograms that can be coupled to drastic morphogenetic changes. How these integrative responses are orchestrated is not completely understood. Here, we provide insight into these mechanisms by studying pupariation, a multi-step innate behavior of fly larvae that is critical for survival during metamorphosis. We find that the steroid-hormone ecdysone triggers parallel pupariation neuromotor and morphogenetic subprograms, which include the induction of the relaxin-peptide hormone, Dilp8, in the epidermis. Dilp8 acts on six Lgr3-positive thoracic interneurons to couple both subprograms in time and to instruct neuromotor subprogram switching during behavior. Our work reveals that interorgan feedback gates progression between subunits of an innate behavior and points to an ancestral neuromodulatory function of relaxin signaling.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Fabiana Heredia ◽  
Yanel Volonté ◽  
Joana Pereirinha ◽  
Magdalena Fernandez-Acosta ◽  
Andreia P. Casimiro ◽  
...  

AbstractInnate behaviors consist of a succession of genetically-hardwired motor and physiological subprograms that can be coupled to drastic morphogenetic changes. How these integrative responses are orchestrated is not completely understood. Here, we provide insight into these mechanisms by studying pupariation, a multi-step innate behavior of Drosophila larvae that is critical for survival during metamorphosis. We find that the steroid-hormone ecdysone triggers parallel pupariation neuromotor and morphogenetic subprograms, which include the induction of the relaxin-peptide hormone, Dilp8, in the epidermis. Dilp8 acts on six Lgr3-positive thoracic interneurons to couple both subprograms in time and to instruct neuromotor subprogram switching during behavior. Our work reveals that interorgan feedback gates progression between subunits of an innate behavior and points to an ancestral neuromodulatory function of relaxin signaling.


1988 ◽  
Vol 116 (1) ◽  
pp. 91-95 ◽  
Author(s):  
J. Rosenberg ◽  
M. Pines ◽  
S. Hurwitz

ABSTRACT Dispersed chick adrenocortical cells were incubated with avian parathyroid hormone (aPTH) or ACTH. Accumulation of cyclic AMP (cAMP), activity of cAMP-dependent protein kinase and the secretion of corticosterone and aldosterone, in response to these hormones, were measured. Accumulation of cAMP and activity of cAMP-dependent protein kinase were stimulated by both aPTH and ACTH as well as by cholera toxin. Cyclic AMP production followed a similar time-course when stimulated by either peptide hormone. Stimulation of steroid hormone secretion was detectable after 20 min of incubation with ACTH, but only after 40 min with aPTH. The maximal steroid hormone secretion by adrenocortical cells was similar when induced by either peptide hormone. The aPTH concentrations needed for half-maximal response of corticosterone and aldosterone secretion were higher than those for ACTH (2·5- and 2-fold respectively), but still within the physiological range. The 11β-hydroxylase inhibitor metyrapone inhibited the secretion of both corticosterone and aldosterone when induced by either aPTH or ACTH. The results suggest that aPTH is almost as potent as ACTH in stimulating the secretion of corticosterone and aldosterone from chick adrenocortical cells and utilizes a cAMP-dependent pathway similar to that of ACTH. J. Endocr. (1988) 116, 91–95


2013 ◽  
Vol 51 (3) ◽  
pp. T115-T140 ◽  
Author(s):  
Shannon E Mullican ◽  
Joanna R DiSpirito ◽  
Mitchell A Lazar

The nuclear receptor superfamily includes many receptors, identified based on their similarity to steroid hormone receptors but without a known ligand. The study of how these receptors are diversely regulated to interact with genomic regions to control a plethora of biological processes has provided critical insight into development, physiology, and the molecular pathology of disease. Here we provide a compendium of these so-called orphan receptors and focus on what has been learned about their modes of action, physiological functions, and therapeutic promise.


eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Julia Santiago ◽  
Benjamin Brandt ◽  
Mari Wildhagen ◽  
Ulrich Hohmann ◽  
Ludwig A Hothorn ◽  
...  

Plants constantly renew during their life cycle and thus require to shed senescent and damaged organs. Floral abscission is controlled by the leucine-rich repeat receptor kinase (LRR-RK) HAESA and the peptide hormone IDA. It is unknown how expression of IDA in the abscission zone leads to HAESA activation. Here we show that IDA is sensed directly by the HAESA ectodomain. Crystal structures of HAESA in complex with IDA reveal a hormone binding pocket that accommodates an active dodecamer peptide. A central hydroxyproline residue anchors IDA to the receptor. The HAESA co-receptor SERK1, a positive regulator of the floral abscission pathway, allows for high-affinity sensing of the peptide hormone by binding to an Arg-His-Asn motif in IDA. This sequence pattern is conserved among diverse plant peptides, suggesting that plant peptide hormone receptors may share a common ligand binding mode and activation mechanism.


2002 ◽  
Vol 14 (12) ◽  
pp. 3163-3176 ◽  
Author(s):  
Teresa Montoya ◽  
Takahito Nomura ◽  
Kerrie Farrar ◽  
Tsuyoshi Kaneta ◽  
Takao Yokota ◽  
...  

2016 ◽  
Author(s):  
Julia Santiago ◽  
Benjamin Brandt ◽  
Mari Wildhagen ◽  
Ulrich Hohmann ◽  
Ludwig A Hothorn ◽  
...  

Science ◽  
2020 ◽  
Vol 367 (6485) ◽  
pp. 1482-1485 ◽  
Author(s):  
S. Reichardt ◽  
H.-P. Piepho ◽  
A. Stintzi ◽  
A. Schaller

The premature abscission of flowers and fruits limits crop yield under environmental stress. Drought-induced flower drop in tomato plants was found to be regulated by phytosulfokine (PSK), a peptide hormone previously known for its growth-promoting and immune-modulating activities. PSK formation in response to drought stress depends on phytaspase 2, a subtilisin-like protease of the phytaspase subtype that generates the peptide hormone by aspartate-specific processing of the PSK precursor in the tomato flower pedicel. The mature peptide acts in the abscission zone where it induces expression of cell wall hydrolases that execute the abscission process. Our results provide insight into the molecular control of abscission as regulated by proteolytic processing to generate a small plant peptide hormone.


2021 ◽  
Author(s):  
Corey C Harwell ◽  
Miguel Turrero García ◽  
Sarah K Stegmann ◽  
Tiara Lacey ◽  
Christopher M Reid ◽  
...  

The septum is a ventral forebrain structure known to regulate innate behaviors. During embryonic development, septal neurons are produced in multiple proliferative areas from neural progenitors following transcriptional programs that are still largely unknown. Here, we use a combination of single cell RNA sequencing, histology and genetic models to address how septal neuron diversity is established during neurogenesis. We find that the transcriptional profiles of septal progenitors change along neurogenesis, coinciding with the generation of distinct neuron types. We characterize the septal eminence, a spatially distinct and transient proliferative zone composed of progenitors with distinctive molecular profiles, proliferative capacity and fate potential compared to the rostral septal progenitor zone. We show that Nkx2.1-expressing septal eminence progenitors give rise to neurons belonging to at least three morphological classes, born in temporal cohorts that are distributed across different septal nuclei in a sequential fountain-like pattern. Our study provides insight into the molecular programs that control the sequential production of different neuronal types in the septum, a structure with important roles in regulating mood and motivation.


F1000Research ◽  
2019 ◽  
Vol 8 ◽  
pp. 1629 ◽  
Author(s):  
Mari Iwasaki ◽  
Yasutada Akiba ◽  
Jonathan D Kaunitz

Vasoactive intestinal peptide (VIP), a gut peptide hormone originally reported as a vasodilator in 1970, has multiple physiological and pathological effects on development, growth, and the control of neuronal, epithelial, and endocrine cell functions that in turn regulate ion secretion, nutrient absorption, gut motility, glycemic control, carcinogenesis, immune responses, and circadian rhythms. Genetic ablation of this peptide and its receptors in mice also provides new insights into the contribution of VIP towards physiological signaling and the pathogenesis of related diseases. Here, we discuss the impact of VIP on gastrointestinal function and diseases based on recent findings, also providing insight into its possible therapeutic application to diabetes, autoimmune diseases and cancer.


Sign in / Sign up

Export Citation Format

Share Document