scholarly journals Tractography density affects whole-brain structural architecture and resting-state dynamical modeling

2020 ◽  
Author(s):  
Kyesam Jung ◽  
Simon B. Eickhoff ◽  
Oleksandr V. Popovych

AbstractDynamical modeling of the resting-state brain dynamics essentially relies on the empirical neuroimaging data utilized for the model derivation and validation. There is however still no standardized data processing for magnetic resonance imaging pipelines and the structural and functional connectomes involved in the models. In this study, we thus address how the parameters of diffusion-weighted data processing for structural connectivity (SC) can influence the validation results of the whole-brain mathematical models and search for the optimal parameter settings. On this way, we simulate the functional connectivity by systems of coupled oscillators, where the underlying network is constructed from the empirical SC and evaluate the performance of the models for varying parameters of data processing. For this, we introduce a set of simulation conditions including the varying number of total streamlines of the whole-brain tractography (WBT) used for extraction of SC, cortical parcellations based on functional and anatomical brain properties and distinct model fitting modalities. We observed that the graph-theoretical network properties of structural connectome can be affected by varying tractography density and strongly relate to the model performance. We explored free parameters of the considered models and found the optimal parameter configurations, where the model dynamics closely replicates the empirical data. We also found that the optimal number of the total streamlines of WBT can vary for different brain atlases. Consequently, we suggest a way how to improve the model performance based on the network properties and the optimal parameter configurations from multiple WBT conditions. Furthermore, the population of subjects can be stratified into subgroups with divergent behaviors induced by the varying number of WBT streamlines such that different recommendations can be made with respect to the data processing for individual subjects and brain parcellations.Author summaryThe human brain connectome at macro level provides an anatomical constitution of inter-regional connections through the white matter in the brain. Understanding the brain dynamics grounded on the structural architecture is one of the most studied and important topics actively debated in the neuroimaging research. However, the ground truth for the adequate processing and reconstruction of the human brain connectome in vivo is absent, which is crucial for evaluation of the results of the data-driven as well as model-based approaches to brain investigation. In this study we thus evaluate the effect of the whole-brain tractography density on the structural brain architecture by varying the number of total axonal fiber streamlines. The obtained results are validated throughout the dynamical modeling of the resting-state brain dynamics. We found that the tractography density may strongly affect the graph-theoretical network properties of the structural connectome. The obtained results also show that a dense whole-brain tractography is not always the best condition for the modeling, which depends on a selected brain parcellation used for the calculation of the structural connectivity and derivation of the model network. Our findings provide suggestions for the optimal data processing for neuroimaging research and brain modeling.

2018 ◽  
Author(s):  
Amrit Kashyap ◽  
Shella Keilholz

AbstractBrain Network Models have become a promising theoretical framework in simulating signals that are representative of whole brain activity such as resting state fMRI. However, it has been difficult to compare the complex brain activity between simulated and empirical data. Previous studies have used simple metrics that surmise coordination between regions such as functional connectivity, and we extend on this by using various different dynamical analysis tools that are currently used to understand resting state fMRI. We show that certain properties correspond to the structural connectivity input that is shared between the models, and certain dynamic properties relate more to the mathematical description of the Brain Network Model. We conclude that the dynamic properties that gauge more temporal structure rather than spatial coordination in the rs-fMRI signal seem to provide the largest contrasts between different BNMs and the unknown empirical dynamical system. Our results will be useful in constraining and developing more realistic simulations of whole brain activity.


2021 ◽  
Author(s):  
Kevin J. Wischnewski ◽  
Simon B. Eickhoff ◽  
Viktor K. Jirsa ◽  
Oleksandr V. Popovych

Abstract Simulating the resting-state brain dynamics via mathematical whole-brain models requires an optimal selection of parameters, which determine the model’s capability to replicate empirical data. Since the parameter optimization via a grid search (GS) becomes unfeasible for high-dimensional models, we evaluate several alternative approaches to maximize the correspondence between simulated and empirical functional connectivity. A dense GS serves as a benchmark to assess the performance of four optimization schemes: Nelder-Mead Algorithm (NMA), Particle Swarm Optimization (PSO), Covariance Matrix Adaptation Evolution Strategy (CMAES) and Bayesian Optimization (BO). To compare them, we employ an ensemble of coupled phase oscillators built upon individual empirical structural connectivity of 105 healthy subjects. We determine optimal model parameters from two- and three-dimensional parameter spaces and show that the overall fitting quality of the tested methods can compete with the GS. There are, however, marked differences in the required computational resources and stability properties, which we also investigate before proposing CMAES and BO as efficient alternatives to a high-dimensional GS. For the three-dimensional case, these methods generated similar results as the GS, but within less than 6% of the computation time. Our results contribute to an efficient validation of models for personalized simulations of brain dynamics.


2020 ◽  
Author(s):  
Anira Escrichs ◽  
Carles Biarnes ◽  
Josep Garre-Olmo ◽  
José Manuel Fernández-Real ◽  
Rafel Ramos ◽  
...  

Abstract Normal aging causes disruptions in the brain that can lead to cognitive decline. Resting-state functional magnetic resonance imaging studies have found significant age-related alterations in functional connectivity across various networks. Nevertheless, most of the studies have focused mainly on static functional connectivity. Studying the dynamics of resting-state brain activity across the whole-brain functional network can provide a better characterization of age-related changes. Here, we employed two data-driven whole-brain approaches based on the phase synchronization of blood-oxygen-level-dependent signals to analyze resting-state fMRI data from 620 subjects divided into two groups (middle-age group (n = 310); age range, 50–64 years versus older group (n = 310); age range, 65–91 years). Applying the intrinsic-ignition framework to assess the effect of spontaneous local activation events on local–global integration, we found that the older group showed higher intrinsic ignition across the whole-brain functional network, but lower metastability. Using Leading Eigenvector Dynamics Analysis, we found that the older group showed reduced ability to access a metastable substate that closely overlaps with the so-called rich club. These findings suggest that functional whole-brain dynamics are altered in aging, probably due to a deficiency in a metastable substate that is key for efficient global communication in the brain.


2018 ◽  
Author(s):  
Amit Naskar ◽  
Anirudh Vattikonda ◽  
Gustavo Deco ◽  
Dipanjan Roy ◽  
Arpan Banerjee

AbstractPrevious neuro-computational studies have established the connection of spontaneous resting-state brain activity with “large-scale” neuronal ensembles using dynamic mean field approach and showed the impact of local excitatory−inhibitory (E−I) balance in sculpting dynamical patterns. Here, we argue that whole brain models that link multiple scales of physiological organization namely brain metabolism that governs synaptic concentrations of gamma-aminobutyric acid (GABA) and glutamate on one hand and neural field dynamics that operate on the macroscopic scale. The multiscale dynamic mean field (MDMF) model captures the synaptic gating dynamics over a cortical macrocolumn as a function of neurotransmitter kinetics. Multiple MDMF units were placed in brain locations guided by an anatomical parcellation and connected by tractography data from diffusion tensor imaging. The resulting whole-brain model generates the resting-state functional connectivity and also reveal that optimal configurations of glutamate and GABA captures the dynamic working point of the brain, that is the state of maximum metsatability as observed in BOLD signals. To demonstrate test-retest reliability we validate the observation that healthy resting brain dynamics is governed by optimal glutamate-GABA configurations using two different brain parcellations for model set-up. Furthermore, graph theoretical measures of segregation (modularity and clustering coefficient) and integration (global efficiency and characteristic path length) on the functional connectivity generated from healthy and pathological brain network studies could be explained by the MDMF model. In conclusion, the MDMF model could relate the various scales of observations from neurotransmitter concentrations to dynamics of synaptic gating to whole-brain resting-state network topology in health and disease.


2020 ◽  
Author(s):  
Anira Escrichs ◽  
Carles Biarnes ◽  
Josep Garre-Olmo ◽  
José Manuel Fernández-Real ◽  
Rafel Ramos ◽  
...  

AbstractNormal aging causes disruptions in the brain that can lead to cognitive decline. Resting-state fMRI studies have found significant age-related alterations in functional connectivity across various networks. Nevertheless, most of the studies have focused mainly on static functional connectivity. Studying the dynamics of resting-state brain activity across the whole-brain functional network can provide a better characterization of age-related changes. Here we employed two data-driven whole-brain approaches based on the phase synchronization of blood-oxygen-level-dependent (BOLD) signals to analyze resting-state fMRI data from 620 subjects divided into two groups (‘middle-age group’ (n=310); age range, 50-65 years vs. ‘older group’ (n=310); age range, 66-91 years). Applying the Intrinsic-Ignition Framework to assess the effect of spontaneous local activation events on local-global integration, we found that the older group showed higher intrinsic ignition across the whole-brain functional network, but lower metastability. Using Leading Eigenvector Dynamics Analysis, we found that the older group showed reduced ability to access a metastable substate that closely overlaps with the so-called rich club. These findings suggest that functional whole-brain dynamics are altered in aging, probably due to a deficiency in a metastable substate that is key for efficient global communication in the brain.


2021 ◽  
Author(s):  
Robyn L. Miller ◽  
Victor M Vergara ◽  
Vince Calhoun

The most common pipelines for studying time-varying network connectivity in resting state functional magnetic resonance imaging (rs-fMRI) operate at the whole brain level, capturing a small discrete set of 'states' that best represent time-resolved joint measures of connectivity over all network pairs in the brain. This whole-brain hidden Markov model (HMM) approach 'uniformizes' the dynamics over what is typically more than 1000 pairs of networks, forcing each time-resolved high-dimensional observation into its best-matched high-dimensional state. While straightforward and convenient, this HMM simplification obscures functional and temporal nonstationarities that could reveal systematic, informative features of resting state brain dynamics at a more granular scale. We introduce a framework for studying functionally localized dynamics that intrinsically embeds them within a whole-brain HMM frame of reference. The approach is validated in a large rs-fMRI schizophrenia study where it identifies group differences in localized patterns of entropy and dynamics that help explain consistently observed differences between schizophrenia patients and controls in occupancy of whole-brain dFNC states more mechanistically.


2016 ◽  
Vol 47 (4) ◽  
pp. 585-596 ◽  
Author(s):  
K. Baek ◽  
L. S. Morris ◽  
P. Kundu ◽  
V. Voon

BackgroundThe efficient organization and communication of brain networks underlie cognitive processing and their disruption can lead to pathological behaviours. Few studies have focused on whole-brain networks in obesity and binge eating disorder (BED). Here we used multi-echo resting-state functional magnetic resonance imaging (rsfMRI) along with a data-driven graph theory approach to assess brain network characteristics in obesity and BED.MethodMulti-echo rsfMRI scans were collected from 40 obese subjects (including 20 BED patients) and 40 healthy controls and denoised using multi-echo independent component analysis (ME-ICA). We constructed a whole-brain functional connectivity matrix with normalized correlation coefficients between regional mean blood oxygenation level-dependent (BOLD) signals from 90 brain regions in the Automated Anatomical Labeling atlas. We computed global and regional network properties in the binarized connectivity matrices with an edge density of 5%–25%. We also verified our findings using a separate parcellation, the Harvard–Oxford atlas parcellated into 470 regions.ResultsObese subjects exhibited significantly reduced global and local network efficiency as well as decreased modularity compared with healthy controls, showing disruption in small-world and modular network structures. In regional metrics, the putamen, pallidum and thalamus exhibited significantly decreased nodal degree and efficiency in obese subjects. Obese subjects also showed decreased connectivity of cortico-striatal/cortico-thalamic networks associated with putaminal and cortical motor regions. These findings were significant with ME-ICA with limited group differences observed with conventional denoising or single-echo analysis.ConclusionsUsing this data-driven analysis of multi-echo rsfMRI data, we found disruption in global network properties and motor cortico-striatal networks in obesity consistent with habit formation theories. Our findings highlight the role of network properties in pathological food misuse as possible biomarkers and therapeutic targets.


2017 ◽  
Author(s):  
Patricio Donnelly Kehoe ◽  
Victor M. Saenger ◽  
Nina Lisofsky ◽  
Simone Kühn ◽  
Morten L. Kringelbach ◽  
...  

AbstractResting state fMRI has been the primary tool for studying the functional organization of the human brain. However, even at so-called “rest”, ongoing brain activity and its underlying physiological organization is highly dynamic and yet most of the information generated so far comes from group analysis. Here we developed an imaging-based technique capable of portraying information of local dynamics at a single-subject level reliably by using a whole-brain model that estimates a local bifurcation parameter, which reflects if a brain region presents stable, asynchronous or transitory oscillations. Using 50 longitudinal resting state sessions of one single subject and single resting state sessions from a group of 50 participants we demonstrated that individual global and local brain dynamics can be estimated consistently with respect to a reference group using only a scanning time of 15 to 20 minutes. We also showed that brain hubs are closer to a transition point between synchronous and asynchronous oscillatory dynamics and that dynamics in frontal areas have larger variations compared to other regions. Finally, we analyzed the variability and error of these dynamics and found high symmetry between hemispheres, which interestingly was reduced by adding more sessions. The framework presented here can be used to study functional brain dynamics on an individual level, opening new avenues for possible clinical applications.Bullet pointsLocal brain dynamics are consistent across scans.Four scans of five minutes each are enough to get highly reliable and consistent results.Hub areas are in a transition point between a synchronous and asynchronous regime.Variability and error of local dynamics presented high symmetry between hemispheres.


2019 ◽  
Vol 3 (2) ◽  
pp. 405-426 ◽  
Author(s):  
Amrit Kashyap ◽  
Shella Keilholz

Brain network models (BNMs) have become a promising theoretical framework for simulating signals that are representative of whole-brain activity such as resting-state fMRI. However, it has been difficult to compare the complex brain activity obtained from simulations to empirical data. Previous studies have used simple metrics to characterize coordination between regions such as functional connectivity. We extend this by applying various different dynamic analysis tools that are currently used to understand empirical resting-state fMRI (rs-fMRI) to the simulated data. We show that certain properties correspond to the structural connectivity input that is shared between the models, and certain dynamic properties relate more to the mathematical description of the brain network model. We conclude that the dynamic properties that explicitly examine patterns of signal as a function of time rather than spatial coordination between different brain regions in the rs-fMRI signal seem to provide the largest contrasts between different BNMs and the unknown empirical dynamical system. Our results will be useful in constraining and developing more realistic simulations of whole-brain activity.


Sign in / Sign up

Export Citation Format

Share Document