scholarly journals Proteomic characterization of pilot scale hot-water extracts from the industrial carrageenan red seaweed Eucheuma denticulatum

2020 ◽  
Author(s):  
Simon Gregersen ◽  
Margarita Pertseva ◽  
Paolo Marcatili ◽  
Susan Løvstad Holdt ◽  
Charlotte Jacobsen ◽  
...  

AbstractSeaweeds have a long history as a resource for polysaccharides/hydrocolloids extraction for use in the food industry due to their functionality as stabilizing agents. In addition to the carbohydrate content, seaweeds also contains a significant amount of protein, which may find application in food and feed. Here, we present a novel combination of transcriptomics, proteomics, and bioinformatics to determine the protein composition in two pilot-scale extracts from Eucheuma denticilatum (Spinosum) obtained via hot-water extraction. The extracts were characterized by qualitative and quantitative proteomics using LC-MS/MS and a de-novo transcriptome assembly for construction of a novel proteome. Using label-free, relative quantification, we were able to identify the most abundant proteins in the extracts and determined that the majority of quantified protein in the extracts (>75%) is constituted by merely three previously uncharacterized proteins. Putative subcellular localization for the quantified proteins was determined by bioinformatic prediction, and by correlating with the expected copy number from the transcriptome analysis, we determined that the extracts were highly enriched in extracellular proteins. This implies that the method predominantly extracts extracellular proteins, and thus appear ineffective for cellular disruption and subsequent release of intracellular proteins. Ultimately, this study highlight the power of quantitative proteomics as a novel tool for characterization of alternative protein sources intended for use in foods. Additionally, the study showcases the potential of proteomics for evaluation of protein extraction methods and as powerful tool in the development of an efficient extraction process.

Forests ◽  
2019 ◽  
Vol 10 (5) ◽  
pp. 393
Author(s):  
Ermei Chang ◽  
Jin Zhang ◽  
Xiamei Yao ◽  
Shuo Tang ◽  
Xiulian Zhao ◽  
...  

In China, Platycladus orientalis has a lifespan of thousands of years. The long lifespan of these trees may be relevant for the characterization of plant aging at the molecular level. However, the molecular mechanism of the aging process of P. orientalis is still unknown. To explore the relationship between age and growth of P. orientalis, we analyzed physiological changes during P. orientalis senescence. The malondialdehyde content was greater in 200-, 700-, and 1100-year-old ancient trees than in 20-year-old trees, whereas the peroxidase and superoxide dismutase activities, as well as the soluble protein content, exhibited the opposite trend. Furthermore, we performed a de novo transcriptome assembly using RNA-Seq and obtained 48,044 unigenes with an average length of 896 bp. A total of 418 differentially expressed genes were identified in different stages of aging of P. orientalis. Clustering analysis revealed distinct timepoints at which the oxidation–reduction and photosynthesis pathways changed. Eight clusters with distinct expression patterns were identified. The expression levels of photosynthesis-, oxidation–reduction-, and transporter-related genes were down-regulated, whereas those of transcription-, signaling-, and senescence-related genes were up-regulated during aging. In addition, consistent with the most obviously down-regulated genes of photosynthesis-related genes, the photosynthetic indexes including chlorophyll a and b levels decreased steadily during P. orientalis aging. This study combined transcriptome with physiological and biochemical data, revealing potential candidate genes influencing senescence during P. orientalis aging.


2022 ◽  
Vol 62 ◽  
pp. 102619
Author(s):  
Simon Gregersen ◽  
Margarita Pertseva ◽  
Paolo Marcatili ◽  
Susan Løvstad Holdt ◽  
Charlotte Jacobsen ◽  
...  

Author(s):  
Masanao Sato ◽  
Masahide Seki ◽  
Yutaka Suzuki ◽  
Shoko Ueki

Heterosigma akashiwo is a eukaryotic, cosmopolitan, and unicellular alga (class: Raphidophyceae), and produces fish-killing blooms. There is a substantial scientific and practical interest in its ecophysiological characteristics that determine bloom dynamics and its adaptation to broad climate zones. A well-annotated genomic/genetic sequence information enables researchers to characterize organisms using modern molecular technology. The Chloroplast and the mitochondrial genome sequences and transcriptome sequence assembly (TSA) datasets with limited sizes for H. akashiwo are available in NCBI nucleotide database on December 2021: there is no doubt that more genetic information of the species will greatly enhance the progress of biological characterization of the species. Here, we conducted H. akashiwo RNA sequencing, a de novo transcriptome assembly (NCBI TSA ICRV01) of a large number of high-quality short-read sequences, and the functional annotation of predicted genes. Based on our transcriptome, we confirmed that the organism possesses genes that were predicted to function in phagocytosis, supporting the earlier observations of H. akashiwo bacterivory. Along with its capability for photosynthesis, the mixotrophy of H. akashiwo may partially explain its high adaptability to various environmental conditions. Our study here will provide an important toehold to decipher H. akashiwo ecophysiology at a molecular level.


eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Magda Grudniewska ◽  
Stijn Mouton ◽  
Daniil Simanov ◽  
Frank Beltman ◽  
Margriet Grelling ◽  
...  

The regeneration-capable flatworm Macrostomum lignano is a powerful model organism to study the biology of stem cells in vivo. As a flatworm amenable to transgenesis, it complements the historically used planarian flatworm models, such as Schmidtea mediterranea. However, information on the transcriptome and markers of stem cells in M. lignano is limited. We generated a de novo transcriptome assembly and performed the first comprehensive characterization of gene expression in the proliferating cells of M. lignano, represented by somatic stem cells, called neoblasts, and germline cells. Knockdown of a selected set of neoblast genes, including Mlig-ddx39, Mlig-rrm1, Mlig-rpa3, Mlig-cdk1, and Mlig-h2a, confirmed their crucial role for the functionality of somatic neoblasts during homeostasis and regeneration. The generated M. lignano transcriptome assembly and gene expression signatures of somatic neoblasts and germline cells will be a valuable resource for future molecular studies in M. lignano.


Author(s):  
Masanao Sato ◽  
Masahide Seki ◽  
Yutaka Suzuki ◽  
Shoko Ueki

Heterosigma akashiwo is a eukaryotic, cosmopolitan, and unicellular alga (class: Raphidophyceae), and produces fish-killing blooms. There is a substantial scientific and practical interest in its ecophysiological characteristics that determine bloom dynamics and its adaptation to broad climate zones. A well-annotated genomic/genetic sequence information enables researchers to characterize organisms using modern molecular technology. The Chloroplast and the mitochondrial genome sequences and transcriptome sequence assembly (TSA) datasets with limited sizes for H. akashiwo are available in NCBI nucleotide database on December 2021: there is no doubt that more genetic information of the species will greatly enhance the progress of biological characterization of the species. Here, we conducted H. akashiwo RNA sequencing, a de novo transcriptome assembly (NCBI TSA ICRV01) of a large number of high-quality short-read sequences, and the functional annotation of predicted genes. Based on our transcriptome, we confirmed that the organism possesses genes that were predicted to function in phagocytosis, supporting the earlier observations of H. akashiwo bacterivory. Along with its capability for photosynthesis, the mixotrophy of H. akashiwo may partially explain its high adaptability to various environmental conditions. Our study here will provide an important toehold to decipher H. akashiwo ecophysiology at a molecular level.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Corinna Friedrich ◽  
Simon Schallenberg ◽  
Marieluise Kirchner ◽  
Matthias Ziehm ◽  
Sylvia Niquet ◽  
...  

AbstractFormalin-fixed paraffin-embedded (FFPE) tissues are a valuable resource for retrospective clinical studies. Here, we evaluate the feasibility of (phospho-)proteomics on FFPE lung tissue regarding protein extraction, quantification, pre-analytics, and sample size. After comparing protein extraction protocols, we use the best-performing protocol for the acquisition of deep (phospho-)proteomes from lung squamous cell and adenocarcinoma with >8,000 quantified proteins and >14,000 phosphosites with a tandem mass tag (TMT) approach. With a microscaled approach, we quantify 7,000 phosphosites, enabling the analysis of FFPE biopsies with limited tissue amounts. We also investigate the influence of pre-analytical variables including fixation time and heat-assisted de-crosslinking on protein extraction efficiency and proteome coverage. Our improved workflows provide quantitative information on protein abundance and phosphosite regulation for the most relevant oncogenes, tumor suppressors, and signaling pathways in lung cancer. Finally, we present general guidelines to which methods are best suited for different applications, highlighting TMT methods for comprehensive (phospho-)proteome profiling for focused clinical studies and label-free methods for large cohorts.


1982 ◽  
Vol 94 (3) ◽  
pp. 654-661 ◽  
Author(s):  
J M Mullins ◽  
J R McIntosh

Midbodies were isolated from synchronized cultures of Chinese hamster ovary (CHO) cells and their protein composition was studied by means of SDS PAGE. Gels of the midbodies included alpha and beta tubulins as major bands (approximately 30% of the total protein) and approximately 35 other bands, none of which constituted greater than 3.5% of the total protein. Extraction of the isolated midbodies with Sarkosyl NL-30- solubilized the midbody microtubules but left the central, dense matrix zone of the midbody intact. A protein doublet of approximately 115,000 mol wt was retained preferentially by the particulate fraction containing the matrix zones, indicating it to be a component of the matrix. The 115,000 mol wt doublet was also present in gels of isolated mitotic spindles from CHO cells. The overall protein composition of the isolated spindles was very similar to that of the isolated midbodies.


Sign in / Sign up

Export Citation Format

Share Document