scholarly journals Selective human tau protein expression in different clock circuits of the Drosophila brain disrupts different aspects of sleep and circadian rhythms

2020 ◽  
Author(s):  
David Jaciuch ◽  
Jack Munns ◽  
Sangeeta Chawla ◽  
Seth J. Davis ◽  
Mikko Juusola

AbstractCircadian behavioural deficits, such as increased daytime naps and reduced night-time sleep, are common in Alzheimer’s disease and other tauopathies. But it has remained unclear whether these circadian abnormalities arise from tau pathology in either the master pacemaker or downstream neurons. Here we study this question by selectively expressing different human tau proteins in specific Drosophila brain circuits and monitoring locomotor activity under light-dark (LD) and in “free-running” dark-dark (DD) conditions. We show that expressing human tau proteins in the fly brain recapitulates faithfully several behavioural changes found in tauopathies. We identify discrete neuronal subpopulations within the clock network as the primary target of distinct circadian behavioural disturbances in different environmental conditions. Specifically, we show that the PDF-positive pacemaker neurons are the main site for night-activity gain and -sleep loss, whereas the non-PDF clock-neurons are the main site of reduced intrinsic behavioural rhythmicity. Bioluminescence measurements revealed that the molecular clock is intact despite the behavioural arrhythmia. Our results establish that dysfunction in both the central clock- and afferent clock-neurons jointly contribute to the circadian locomotor activity rhythm disruption in Drosophila expressing human tau.Significance StatementThis study directly links in vivo human tau protein expression in region-specific Drosophila clock-neurons with the resulting sleep and circadian rhythm deficits to extract new knowledge of how Alzheimer’s disease and other tauopathies perturb the balance of activity and sleep. We anticipate that this novel approach will provide a useful general template for other studies of neurodegeneration in model organisms, seeking to dissect the impact of neurodegenerative disease on circadian behaviour, and further deepening our understanding of how the clock-neuron network works.

Author(s):  
P. Novak ◽  
N. Zilka ◽  
M. Zilkova ◽  
B. Kovacech ◽  
R. Skrabana ◽  
...  

Neurofibrillary tau protein pathology is closely associated with the progression and phenotype of cognitive decline in Alzheimer’s disease and other tauopathies, and a high-priority target for disease-modifying therapies. Herein, we provide an overview of the development of AADvac1, an active immunotherapy against tau pathology, and tau epitopes that are potential targets for immunotherapy. The vaccine leads to the production of antibodies that target conformational epitopes in the microtubule-binding region of tau, with the aim to prevent tau aggregation and spreading of pathology, and promote tau clearance. The therapeutic potential of the vaccine was evaluated in transgenic rats and mice expressing truncated, non mutant tau protein, which faithfully replicate of human tau pathology. Treatment with AADvac1 resulted in reduction of neurofibrillary pathology and insoluble tau in their brains, and amelioration of their deleterious phenotype. The vaccine was highly immunogenic in humans, inducing production of IgG antibodies against the tau peptide in 29/30 treated elderly patients with mild-to-moderate Alzheimer’s. These antibodies were able to recognise insoluble tau proteins in Alzheimer patients’ brains. Treatment with AADvac1 proved to be remarkably safe, with injection site reactions being the only adverse event tied to treatment. AADvac1 is currently being investigated in a phase 2 study in Alzheimer’s disease, and a phase 1 study in non-fluent primary progressive aphasia, a neurodegenerative disorder with a high tau pathology component.


2021 ◽  
Vol 5 (4) ◽  
pp. 929-956
Author(s):  
Prama Putra ◽  
Travis B. Thompson ◽  
Pavanjit Chaggar ◽  
Alain Goriely

Abstract A hallmark of Alzheimer’s disease is the aggregation of insoluble amyloid-beta plaques and tau protein neurofibrillary tangles. A key histopathological observation is that tau protein aggregates follow a structured progression pattern through the brain. Mathematical network models of prion-like propagation have the ability to capture such patterns, but a number of factors impact the observed staging result, thus introducing questions regarding model selection. Here, we introduce a novel approach, based on braid diagrams, for studying the structured progression of a marker evolving on a network. We apply this approach to a six-stage ‘Braak pattern’ of tau proteins, in Alzheimer’s disease, motivated by a recent observation that seed-competent tau precedes tau aggregation. We show that the different modeling choices, from the model parameters to the connectome resolution, play a significant role in the landscape of observable staging patterns. Our approach provides a systematic way to approach model selection for network propagation of neurodegenerative diseases that ensures both reproducibility and optimal parameter fitting.


2021 ◽  
Author(s):  
Larissa Rosa Stork ◽  
Lucca Stephani Ribeiro ◽  
Izabella Savergnini Deprá ◽  
Luísa D’Ávila Camargo ◽  
Maria Angélica Santos Novaes

Background: Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by a double proteinopathy: deposition of amyloid-β into plaques and hyperphosphorylation of Tau protein. Objectives: To understand the genetic and molecular aspects of Tau protein and its relationship with Alzheimer’s disease. Methods: We conducted a systematic literature search using Pubmed/ MEDLINE and ClinicalKey databases, applying the descriptors: “Alzheimer Disease” AND “Tau proteins’’ AND Tauopathies, during July and August of 2020. The inclusion criteria were English and Portuguese articles published between 2015 and 2020, with human limited study and free full text, excluding images, books, clinical tests, and narrative reviews. After analyzing titles and abstracts, we selected 12 articles and included 7 additional studies. Results: Mapt, the encoder gene of Tau, is located in the 17q21.3 locus and presents 16 exons that, when transcripted, originates 12 copies of mRNA by alternative splicing and 6 Tau’s isoforms. Tau is a microtubule-associated protein (MAP) responsible for cellular cytoskeleton stabilization and maintenance, promoting neuronal axonal transport. A kinase-phosphatase imbalance turns Tau hyperphosphorylated, disassociating it from tubulin and grouping it into insoluble paired helical filaments, which originates neurofibrillary tangles. The tauopathy’s progress causes neurotransmitter destabilization and neuronal death, inducing AD symptomatic manifestations. Conclusions: Due to the gradual worsening of the disease to more debilitating stages, studies focused on deepening the knowledge of genetic and molecular aspects of Tau protein are viable and promising alternatives to improve the quality of patient’s lives.


2021 ◽  
Vol 22 (17) ◽  
pp. 9207 ◽  
Author(s):  
Jakub Sinsky ◽  
Karoline Pichlerova ◽  
Jozef Hanes

Tau protein plays a critical role in the assembly, stabilization, and modulation of microtubules, which are important for the normal function of neurons and the brain. In diseased conditions, several pathological modifications of tau protein manifest. These changes lead to tau protein aggregation and the formation of paired helical filaments (PHF) and neurofibrillary tangles (NFT), which are common hallmarks of Alzheimer’s disease and other tauopathies. The accumulation of PHFs and NFTs results in impairment of physiological functions, apoptosis, and neuronal loss, which is reflected as cognitive impairment, and in the late stages of the disease, leads to death. The causes of this pathological transformation of tau protein haven’t been fully understood yet. In both physiological and pathological conditions, tau interacts with several proteins which maintain their proper function or can participate in their pathological modifications. Interaction partners of tau protein and associated molecular pathways can either initiate and drive the tau pathology or can act neuroprotective, by reducing pathological tau proteins or inflammation. In this review, we focus on the tau as a multifunctional protein and its known interacting partners active in regulations of different processes and the roles of these proteins in Alzheimer’s disease and tauopathies.


2013 ◽  
Vol 59 (2) ◽  
pp. 144-170 ◽  
Author(s):  
A.V. Maltsev ◽  
N.V. Dovidchenko ◽  
V.K. Uteshev ◽  
V.V. Sokolik ◽  
O.M. Shtang ◽  
...  

Recently the studies of Alzheimer’s disease have become particularly actual and have attracted scientists from all over the world to this problem as a result of dissemination of this dangerous disorder. The reason for such pathogenesis is not known, but the final image, for the first time obtained on microscopic brain sections from patients with this disease more than a hundred years ago, is well known to clinicists. This is the deposition of Ab amyloid in the brain tissue of senile plaques and fibrils. Many authors suppose that the deposition of beta-amyloid provokes secondary neuronal changes which are the reason of neuron death. Other authors associate the death of neurons with hyperphosphorylation of tau-proteins which form neurofibrillar coils inside nerve cells and lead to their death. For creation of methods of preclinical diagnostics and effective treatment of Alzheimer’s disease novel knowledge is required on the nature of triggering factors of sporadic isoforms of Alzheimer’s disease, on cause-effect relationships of phosphorylation of amyloid precursor protein with formation of pathogenic beta-amyloids, on the relationship with these factors of hyperphosphorylation of tau-protein and neuron death. In this review we analyze the papers describing the increasing of intensity of biosynthesis in neurons in normal conditions and under the stress, the possibility of development of energetic unbalanced neurons and activation of their protective systems. Phosphorylation and hyperphosphorylation of tau-proteins is also tightly connected with protective mechanisms of cells and with processes of evacuation of phosphates, adenosine mono-phosphates and pyrophosphates from the region of protein synthesis. Upon long and high intensity of protein synthesis the protective mechanisms are overloaded and the complementarity of metabolitic processes is disturbed. This results in dysfunction of neurons, transport collapse, and neuron death.


2021 ◽  
Author(s):  
Prama Putra ◽  
Travis Thompson ◽  
Alain Goriely

AbstractA hallmark of Alzheimer’s disease is the aggregation of insoluble amyloid-beta plaques and tau protein neurofibrillary tangles. A key histopathological observation is that tau protein aggregates follow a clear progression pattern through the brain; characterized by six distinct stages. This so-called ‘Braak staging pattern’ has become the gold standard for Alzheimer’s disease progression. It has also been suggested, via a histopathological analysis, that soluble seed-competent tau seeding precedes tau aggregation in the same manner. Mathematical models such as prion-like propagation on networks have the ability to capture key feature of the dynamics. Here, we study the staging of tau proteins using a model of proteopathy that include both local growth due to autocatalytic effects and diffusion along axonal pathways. We develop new methods to capture the staging patterns and use these as a qualitative criterion to identify the best model for diffusion process on networks and to identify possible parameter regimes. Our analysis provides a systematic way to study Braak staging in neurodegenerative processes.


eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Jeffery W Kelly

Tau proteins can convert from an inert shape to a misfolded shape that seeds the growth of fibers that contribute to the pathology of Alzheimer’s disease.


2020 ◽  
Author(s):  
Travis B. Thompson ◽  
Pavanjit Chaggar ◽  
Ellen Kuhl ◽  
Alain Goriely ◽  

AbstractNeurodegenerative diseases such as Alzheimer’s or Parkinson’s are associated with the prion-like propagation and aggregation of toxic proteins. A long standing hypothesis that amyloid-beta drives Alzheimer’s disease has proven the subject of contemporary controversy; leading to new research in both the role of tau protein and its interaction with amyloid-beta. Conversely, recent work in mathematical modeling has demonstrated the relevance of nonlinear reaction-diffusion type equations to capture essential features of the disease. Such approaches have been further simplified, to network-based models, and offer researchers a powerful set of computationally tractable tools with which to investigate neurodegenerative disease dynamics.Here, we propose a novel, coupled network-based model for a two-protein system that includes an enzymatic interaction term alongside a simple model of aggregate transneuronal damage. We apply this theoretical model to test the possible interactions between tau proteins and amyloid-beta and study the resulting coupled behavior between toxic protein clearance and proteopathic phenomenology. Our analysis reveals ways in which amyloid-beta and tau proteins may conspire with each other to enhance the nucleation and propagation of different diseases, thus shedding new light on the importance of protein clearance and protein interaction mechanisms in prion-like models of neurodegenerative disease.Author SummaryIn 1906 Dr. Alois Alzheimer delivered a lecture to the Society of Southwest German Psychiatrists. Dr. Alzheimer presented the case of Ms. Auguste Deter; her symptoms would help to define Alzheimer’s disease (AD). Over a century later, with an aging world population, AD is at the fore of global neurodegenerative disease research. Previously, toxic amyloid-beta protein (Aβ) was thought to be the primary driver of AD development. Recent research suggests that another protein, tau, plays a fundamental role. Toxic tau protein contributes to cognitive decline and appears to interact with toxic Aβ; research suggests that toxic Aβ may further increase the effects of toxic tau.Theoretical mathematical models are an important part of neurodegenerative disease research. Such models: enable extensible computational exploration; illuminate emergent behavior; and reduce research costs. We have developed a novel, theoretical mathematical model of two interacting species of proteins within the brain. We analyze the mathematical model and demonstrate a computational implementation in the context of Aβ-tau interaction in the brain. Our model clearly suggests that: the removal rate of toxic protein plays a critical role in AD; and the Aβ-tau ‘conspiracy theory’ is a nuanced, and exciting path forward for Alzheimer’s disease research.


Biomolecules ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 1439 ◽  
Author(s):  
Juan Ramón Perea ◽  
Marta Bolós ◽  
Jesús Avila

Microglia are the cells that comprise the innate immune system in the brain. First described more than a century ago, these cells were initially assigned a secondary role in the central nervous system (CNS) with respect to the protagonists, neurons. However, the latest advances have revealed the complexity and importance of microglia in neurodegenerative conditions such as Alzheimer’s disease (AD), the most common form of dementia associated with aging. This pathology is characterized by the accumulation of amyloid-β peptide (Aβ), which forms senile plaques in the neocortex, as well as by the aggregation of hyperphosphorylated tau protein, a process that leads to the development of neurofibrillary tangles (NFTs). Over the past few years, efforts have been focused on studying the interaction between Aβ and microglia, together with the ability of the latter to decrease the levels of this peptide. Given that most clinical trials following this strategy have failed, current endeavors focus on deciphering the molecular mechanisms that trigger the tau-induced inflammatory response of microglia. In this review, we summarize the most recent studies on the physiological and pathological functions of tau protein and microglia. In addition, we analyze the impact of microglial AD-risk genes (APOE, TREM2, and CD33) in tau pathology, and we discuss the role of extracellular soluble tau in neuroinflammation.


Sign in / Sign up

Export Citation Format

Share Document