scholarly journals Tau protein and its role in Alzheimer’s disease physiopathology: a literature review

2021 ◽  
Author(s):  
Larissa Rosa Stork ◽  
Lucca Stephani Ribeiro ◽  
Izabella Savergnini Deprá ◽  
Luísa D’Ávila Camargo ◽  
Maria Angélica Santos Novaes

Background: Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by a double proteinopathy: deposition of amyloid-β into plaques and hyperphosphorylation of Tau protein. Objectives: To understand the genetic and molecular aspects of Tau protein and its relationship with Alzheimer’s disease. Methods: We conducted a systematic literature search using Pubmed/ MEDLINE and ClinicalKey databases, applying the descriptors: “Alzheimer Disease” AND “Tau proteins’’ AND Tauopathies, during July and August of 2020. The inclusion criteria were English and Portuguese articles published between 2015 and 2020, with human limited study and free full text, excluding images, books, clinical tests, and narrative reviews. After analyzing titles and abstracts, we selected 12 articles and included 7 additional studies. Results: Mapt, the encoder gene of Tau, is located in the 17q21.3 locus and presents 16 exons that, when transcripted, originates 12 copies of mRNA by alternative splicing and 6 Tau’s isoforms. Tau is a microtubule-associated protein (MAP) responsible for cellular cytoskeleton stabilization and maintenance, promoting neuronal axonal transport. A kinase-phosphatase imbalance turns Tau hyperphosphorylated, disassociating it from tubulin and grouping it into insoluble paired helical filaments, which originates neurofibrillary tangles. The tauopathy’s progress causes neurotransmitter destabilization and neuronal death, inducing AD symptomatic manifestations. Conclusions: Due to the gradual worsening of the disease to more debilitating stages, studies focused on deepening the knowledge of genetic and molecular aspects of Tau protein are viable and promising alternatives to improve the quality of patient’s lives.

Author(s):  
P. Novak ◽  
N. Zilka ◽  
M. Zilkova ◽  
B. Kovacech ◽  
R. Skrabana ◽  
...  

Neurofibrillary tau protein pathology is closely associated with the progression and phenotype of cognitive decline in Alzheimer’s disease and other tauopathies, and a high-priority target for disease-modifying therapies. Herein, we provide an overview of the development of AADvac1, an active immunotherapy against tau pathology, and tau epitopes that are potential targets for immunotherapy. The vaccine leads to the production of antibodies that target conformational epitopes in the microtubule-binding region of tau, with the aim to prevent tau aggregation and spreading of pathology, and promote tau clearance. The therapeutic potential of the vaccine was evaluated in transgenic rats and mice expressing truncated, non mutant tau protein, which faithfully replicate of human tau pathology. Treatment with AADvac1 resulted in reduction of neurofibrillary pathology and insoluble tau in their brains, and amelioration of their deleterious phenotype. The vaccine was highly immunogenic in humans, inducing production of IgG antibodies against the tau peptide in 29/30 treated elderly patients with mild-to-moderate Alzheimer’s. These antibodies were able to recognise insoluble tau proteins in Alzheimer patients’ brains. Treatment with AADvac1 proved to be remarkably safe, with injection site reactions being the only adverse event tied to treatment. AADvac1 is currently being investigated in a phase 2 study in Alzheimer’s disease, and a phase 1 study in non-fluent primary progressive aphasia, a neurodegenerative disorder with a high tau pathology component.


2021 ◽  
Vol 22 (17) ◽  
pp. 9207 ◽  
Author(s):  
Jakub Sinsky ◽  
Karoline Pichlerova ◽  
Jozef Hanes

Tau protein plays a critical role in the assembly, stabilization, and modulation of microtubules, which are important for the normal function of neurons and the brain. In diseased conditions, several pathological modifications of tau protein manifest. These changes lead to tau protein aggregation and the formation of paired helical filaments (PHF) and neurofibrillary tangles (NFT), which are common hallmarks of Alzheimer’s disease and other tauopathies. The accumulation of PHFs and NFTs results in impairment of physiological functions, apoptosis, and neuronal loss, which is reflected as cognitive impairment, and in the late stages of the disease, leads to death. The causes of this pathological transformation of tau protein haven’t been fully understood yet. In both physiological and pathological conditions, tau interacts with several proteins which maintain their proper function or can participate in their pathological modifications. Interaction partners of tau protein and associated molecular pathways can either initiate and drive the tau pathology or can act neuroprotective, by reducing pathological tau proteins or inflammation. In this review, we focus on the tau as a multifunctional protein and its known interacting partners active in regulations of different processes and the roles of these proteins in Alzheimer’s disease and tauopathies.


Biomolecules ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1261
Author(s):  
Laura D’Andrea ◽  
Ramona Stringhi ◽  
Monica Di Luca ◽  
Elena Marcello

Alzheimer’s disease (AD) is a neurodegenerative disorder representing the most common form of dementia. It is biologically characterized by the deposition of extracellular amyloid-β (Aβ) senile plaques and intracellular neurofibrillary tangles, constituted by hyperphosphorylated tau protein. The key protein in AD pathogenesis is the amyloid precursor protein (APP), which is cleaved by secretases to produce several metabolites, including Aβ and APP intracellular domain (AICD). The greatest genetic risk factor associated with AD is represented by the Apolipoprotein E ε4 (APOE ε4) allele. Importantly, all of the above-mentioned molecules that are strictly related to AD pathogenesis have also been described as playing roles in the cell nucleus. Accordingly, evidence suggests that nuclear functions are compromised in AD. Furthermore, modulation of transcription maintains cellular homeostasis, and alterations in transcriptomic profiles have been found in neurodegenerative diseases. This report reviews recent advancements in the AD players-mediated gene expression. Aβ, tau, AICD, and APOE ε4 localize in the nucleus and regulate the transcription of several genes, part of which is involved in AD pathogenesis, thus suggesting that targeting nuclear functions might provide new therapeutic tools for the disease.


2020 ◽  
Vol 17 (1) ◽  
pp. 29-43 ◽  
Author(s):  
Patrick Süß ◽  
Johannes C.M. Schlachetzki

: Alzheimer’s Disease (AD) is the most frequent neurodegenerative disorder. Although proteinaceous aggregates of extracellular Amyloid-β (Aβ) and intracellular hyperphosphorylated microtubule- associated tau have long been identified as characteristic neuropathological hallmarks of AD, a disease- modifying therapy against these targets has not been successful. An emerging concept is that microglia, the innate immune cells of the brain, are major players in AD pathogenesis. Microglia are longlived tissue-resident professional phagocytes that survey and rapidly respond to changes in their microenvironment. Subpopulations of microglia cluster around Aβ plaques and adopt a transcriptomic signature specifically linked to neurodegeneration. A plethora of molecules and pathways associated with microglia function and dysfunction has been identified as important players in mediating neurodegeneration. However, whether microglia exert either beneficial or detrimental effects in AD pathology may depend on the disease stage. : In this review, we summarize the current knowledge about the stage-dependent role of microglia in AD, including recent insights from genetic and gene expression profiling studies as well as novel imaging techniques focusing on microglia in human AD pathology and AD mouse models.


2018 ◽  
Vol 15 (4) ◽  
pp. 313-335 ◽  
Author(s):  
Serena Marcelli ◽  
Massimo Corbo ◽  
Filomena Iannuzzi ◽  
Lucia Negri ◽  
Fabio Blandini ◽  
...  

Background: Alzheimer's disease (AD) is a neurodegenerative disorder recognized as the most common cause of chronic dementia among the ageing population. AD is histopathologically characterized by progressive loss of neurons and deposits of insoluble proteins, primarily composed of amyloid-β pelaques and neurofibrillary tangles (NFTs). Methods: Several molecular processes contribute to the formation of AD cellular hallmarks. Among them, post-translational modifications (PTMs) represent an attractive mechanism underlying the formation of covalent bonds between chemical groups/peptides to target proteins, which ultimately result modified in their function. Most of the proteins related to AD undergo PTMs. Several recent studies show that AD-related proteins like APP, Aβ, tau, BACE1 undergo post-translational modifications. The effect of PTMs contributes to the normal function of cells, although aberrant protein modification, which may depend on many factors, can drive the onset or support the development of AD. Results: Here we will discuss the effect of several PTMs on the functionality of AD-related proteins potentially contributing to the development of AD pathology. Conclusion: We will consider the role of Ubiquitination, Phosphorylation, SUMOylation, Acetylation and Nitrosylation on specific AD-related proteins and, more interestingly, the possible interactions that may occur between such different PTMs.


2020 ◽  
Vol 20 (12) ◽  
pp. 1059-1073 ◽  
Author(s):  
Ahmad Abu Turab Naqvi ◽  
Gulam Mustafa Hasan ◽  
Md. Imtaiyaz Hassan

Microtubule-associated protein tau is involved in the tubulin binding leading to microtubule stabilization in neuronal cells which is essential for stabilization of neuron cytoskeleton. The regulation of tau activity is accommodated by several kinases which phosphorylate tau protein on specific sites. In pathological conditions, abnormal activity of tau kinases such as glycogen synthase kinase-3 β (GSK3β), cyclin-dependent kinase 5 (CDK5), c-Jun N-terminal kinases (JNKs), extracellular signal-regulated kinase 1 and 2 (ERK1/2) and microtubule affinity regulating kinase (MARK) lead to tau hyperphosphorylation. Hyperphosphorylation of tau protein leads to aggregation of tau into paired helical filaments like structures which are major constituents of neurofibrillary tangles, a hallmark of Alzheimer’s disease. In this review, we discuss various tau protein kinases and their association with tau hyperphosphorylation. We also discuss various strategies and the advancements made in the area of Alzheimer's disease drug development by designing effective and specific inhibitors for such kinases using traditional in vitro/in vivo methods and state of the art in silico techniques.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Anna A. Lauer ◽  
Daniel Janitschke ◽  
Malena dos Santos Guilherme ◽  
Vu Thu Thuy Nguyen ◽  
Cornel M. Bachmann ◽  
...  

AbstractAlzheimer’s disease (AD) is a very frequent neurodegenerative disorder characterized by an accumulation of amyloid-β (Aβ). Acitretin, a retinoid-derivative and approved treatment for Psoriasis vulgaris, increases non-amyloidogenic Amyloid-Precursor-Protein-(APP)-processing, prevents Aβ-production and elicits cognitive improvement in AD mouse models. As an unintended side effect, acitretin could result in hyperlipidemia. Here, we analyzed the impact of acitretin on the lipidome in brain and liver tissue in the 5xFAD mouse-model. In line with literature, triglycerides were increased in liver accompanied by increased PCaa, plasmalogens and acyl-carnitines, whereas SM-species were decreased. In brain, these effects were partially enhanced or similar but also inverted. While for SM and plasmalogens similar effects were found, PCaa, TAG and acyl-carnitines showed an inverse effect in both tissues. Our findings emphasize, that potential pharmaceuticals to treat AD should be carefully monitored with respect to lipid-homeostasis because APP-processing itself modulates lipid-metabolism and medication might result in further and unexpected changes. Moreover, deducing effects of brain lipid-homeostasis from results obtained for other tissues should be considered cautiously. With respect to acitretin, the increase in brain plasmalogens might display a further positive probability in AD-treatment, while other results, such as decreased SM, indicate the need of medical surveillance for treated patients.


2014 ◽  
Vol 34 (6) ◽  
Author(s):  
Genadiy Fonar ◽  
Abraham O. Samson

Alzheimer's disease is the most common neurodegenerative disorder in the world. Its most significant symptoms are memory loss and decrease in cognition. Alzheimer's disease is characterized by aggregation of two proteins in the brain namely Aβ (amyloid β) and tau. Recent evidence suggests that the interaction of soluble Aβ with nAChR (nicotinic acetylcholine receptors) contributes to disease progression. In this study, we determine the NMR structure of an Aβ17–34 peptide solubilized by the addition of two glutamic acids at each terminus. Our results indicate that the Aβ peptide adopts an α-helical structure for residues 19–26 and 28–33. The α-helical structure is broken around residues S26, N27 and K28, which form a kink in the helical conformation. This α-helix was not described earlier in an aqueous solution without organic solvents, and at physiological conditions (pH 7). These data are in agreement with Aβ adopting an α-helical conformation in the membrane before polymerizing into amyloid β-sheets and provide insight into the intermediate state of Aβ in Alzheimer's disease.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Sara Mahdiabadi ◽  
Sara Momtazmanesh ◽  
George Perry ◽  
Nima Rezaei

Abstract Alzheimer’s disease (AD), the most common cause of dementia, is characterized by progressive cognitive and memory impairment ensued from neuronal dysfunction and eventual death. Intraneuronal deposition of tau proteins and extracellular senile amyloid-β plaques have ruled as the supreme postulations of AD for a relatively long time, and accordingly, a wide range of therapeutics, especially immunotherapies have been implemented. However, none of them resulted in significant positive cognitive outcomes. Especially, the repetitive failure of anti-amyloid therapies proves the inefficiency of the amyloid cascade hypothesis, suggesting that it is time to reconsider this hypothesis. Thus, for the time being, the focus is being shifted to neuroinflammation as a third core pathology in AD. Neuroinflammation was previously considered a result of the two aforementioned phenomena, but new studies suggest that it might play a causal role in the pathogenesis of AD. Neuroinflammation can act as a double-edged sword in the pathogenesis of AD, and the activation of glial cells is indispensable for mediating such attenuating or detrimental effects. The association of immune-related genes polymorphisms with the clinical phenotype of AD as well as the protective effect of anti-inflammatory drugs like nonsteroidal anti-inflammatory drugs supports the possible causal role of neuroinflammation in AD. Here, we comprehensively review immune-based therapeutic approaches toward AD, including monoclonal antibodies and vaccines. We also discuss their efficacy and underlying reasons for shortcomings. Lastly, we highlight the capacity of modulating the neuroimmune interactions and targeting neuroinflammation as a promising opportunity for finding optimal treatments for AD.


2019 ◽  
Vol 141 (3) ◽  
Author(s):  
I. A. Kuznetsov ◽  
A. V. Kuznetsov

Modeling of intracellular processes occurring during the development of Alzheimer's disease (AD) can be instrumental in understanding the disease and can potentially contribute to finding treatments for the disease. The model of intracellular processes in AD, which we previously developed, contains a large number of parameters. To distinguish between more important and less important parameters, we performed a local sensitivity analysis of this model around the values of parameters that give the best fit with published experimental results. We show that the influence of model parameters on the total concentrations of amyloid precursor protein (APP) and tubulin-associated unit (tau) protein in the axon is reciprocal to the influence of the same parameters on the average velocities of the same proteins during their transport in the axon. The results of our analysis also suggest that in the beginning of AD the aggregation of amyloid-β and misfolded tau protein have little effect on transport of APP and tau in the axon, which suggests that early damage in AD may be reversible.


Sign in / Sign up

Export Citation Format

Share Document