scholarly journals Circadian Alterations Increase with Progression in a Patient-Derived Cell Culture Model of Breast Cancer

2021 ◽  
Author(s):  
Hui-Hsien Lin ◽  
Stephanie R. Taylor ◽  
Michelle E. Farkas

AbstractCircadian rhythms are critical regulators of many physiological and behavioral functions; disruption of this time-tracking system can elicit the development of various diseases, including breast cancer. While multiple studies have used cell lines to study the correlation between altered circadian rhythms and cancer, these cells generally have different genetic backgrounds and do not mirror the changes that occur with disease development. Isogenic cell models can represent and recapitulate changes across cancer progression. Hence in the present study, a patient-derived breast cancer model, the 21T series, was used to evaluate changes to circadian oscillations of core clock protein transcription and translation as cells progress from normal to malignant states. Three cell lines from the series were used: H16N2, from normal breast epithelium; 21PT, from Atypical Ductal Hyperplasia; and 21MT, from Invasive Metastatic Carcinoma. Both of the cancerous cell lines are HER2 positive. We assessed the transcriptional profiles of two core circadian clock proteins, BMAL1 and PER2, which represent a positive and negative component of the molecular oscillator. In the normal H16N2 cells, BMAL1 and PER2 both possessed rhythmic mRNA oscillations with close to standard periods and the expected anti-phase relationship. However, in the cancerous cells, consistent changes were observed: both clock genes had periods that deviated farther from normal and did not have an anti-phase relationship. To provide a more complete understanding of circadian alterations in breast cancer, luciferase reporters and real-time luminometry should be used in future studies.

2021 ◽  
Vol 3 (4) ◽  
pp. 598-608
Author(s):  
Hui-Hsien Lin ◽  
Stephanie R. Taylor ◽  
Michelle E. Farkas

Circadian rhythm disruption can elicit the development of various diseases, including breast cancer. While studies have used cell lines to study correlations between altered circadian rhythms and cancer, these models have different genetic backgrounds and do not mirror the changes that occur with disease development. Isogenic cell models can recapitulate changes across cancer progression. Hence, in this study, a patient-derived breast cancer model, the 21T series, was used to evaluate changes to circadian oscillations of core clock protein transcription as cells progress from normal to malignant states. Three cell lines were used: H16N2 (normal breast epithelium), 21PT (atypical ductal hyperplasia), and 21MT-1 (invasive metastatic carcinoma). The cancerous cells are both HER2+. We assessed the transcriptional profiles of two core clock proteins, BMAL1 and PER2, which represent a positive and negative component of the molecular oscillator. In the normal H16N2 cells, both genes possessed rhythmic mRNA oscillations with close to standard periods and phases. However, in the cancerous cells, consistent changes were observed: both genes had periods that deviated farther from normal and did not have an anti-phase relationship. In the future, mechanistic studies should be undertaken to determine the oncogenic changes responsible for the circadian alterations found.


2020 ◽  
Author(s):  
Adriane Feijo Evangelista ◽  
Renato J Oliveira ◽  
Viviane A O Silva ◽  
Rene A D C Vieira ◽  
Rui M Reis ◽  
...  

Abstract Introduction: Breast cancer is the most frequently diagnosed malignancy among women. However, the role of microRNA expression in breast cancer progression is not fully understood. In this study we examined predictive interactions between differentially expressed miRNAs and mRNAs in breast cancer cell lines representative of the common molecular subtypes. Integrative bioinformatics analysis identified miR-193 and miR-210 as potential regulatory biomarkers of mRNA in breast cancer. Several recent studies have investigated these miRNAs in a broad range of tumors, but the mechanism of their involvement in cancer progression has not previously been investigated. Methods: The miRNA-mRNA interactions in breast cancer cell lines were identified by parallel expression analysis and miRNA target prediction programs. The expression profiles of mRNA and miRNAs from luminal (MCF-7, MCF-7/AZ and T47D), HER2 (BT20 and SK-BR3) and triple negative subtypes (Hs578T e MDA-MB-231) could be clearly separated by unsupervised analysis using HB4A cell line as a control. Breast cancer miRNA data from TCGA patients were grouped according to molecular subtypes and then used to validate these findings. Expression of miR-193 and miR-210 was investigated by miRNA transient silencing assays using the MCF7, BT20 and MDA-MB-231 cell lines. Functional studies included, xCELLigence system, ApoTox-Glo triplex, flow cytometry and transwell assays were performed to determine cell proliferation, cytotoxicity, apoptosis, migration and invasion, respectively. Results: The most evident effects were associated with cell proliferation after miR-210 silencing in triple negative subtype cell line MDA-MB-231. Using in silico prediction algorithms, TNFRSF10 was identified as one of the potential downstream targets for both miRNAs. The TNFRSF10C and TNFRSF10D mRNA expression inversely correlated with the expression levels of miR-193 and miR210 in breast cell lines and breast cancer patients, respectively. Other potential regulated genes whose expression also inversely correlated with both miRNAs were CCND1, a mediator on invasion and metastasis, and the tumor suppressor gene RUNX3. Conclusion: In summary, our findings identify miR-193 and miR-210 as potential regulatory miRNA in different molecular subtypes of breast cancer and suggest that miR-210 may have specific role in MDA-MB-231 proliferation. Our results highlight important new downstream regulated targets that may serve as promising therapeutic pathways for aggressive breast cancers.


PLoS ONE ◽  
2021 ◽  
Vol 16 (9) ◽  
pp. e0257298
Author(s):  
Joohyun Woo ◽  
Jong Bin Kim ◽  
Taeeun Cho ◽  
Eun Hye Yoo ◽  
Byung-In Moon ◽  
...  

The response rate to treatment with trastuzumab (Tz), a recombinant humanized anti-HER2 monoclonal antibody, is only 12–34% despite demonstrated effectiveness on improving the survival of patients with HER2-positive breast cancers. Selenium has an antitumor effect against cancer cells and can play a cytoprotective role on normal cells. This study investigated the effect of selenium on HER2-positive breast cancer cells and the mechanism in relation to the response of the cells to Tz. HER2-positive breast cancer cell lines, SK-BR-3 as trastuzumab-sensitive cells, and JIMT-1 as Tz-resistant cells were treated with Tz and sodium selenite (selenite). Cell survival rates and expression of Her2, Akt, and autophagy-related proteins, including LC3B and beclin 1, in both cell lines 72 h after treatment were evaluated. Significant cell death was induced at different concentrations of selenite in both cell lines. A combined effect of selenite and Tz at 72 h was similar to or significantly greater than each drug alone. The expression of phosphorylated Akt (p-Akt) was decreased in JIMT-1 after combination treatment compared to that after only Tz treatment, while p-Akt expression was increased in SK-BR-3. The expression of beclin1 increased particularly in JIMT-1 after only Tz treatment and was downregulated by combination treatment. These results showed that combination of Tz and selenite had an antitumor effect in Tz-resistant breast cancer cells through downregulation of phosphorylated Akt and beclin1-related autophagy. Selenite might be a potent drug to treat Tz-resistant breast cancer by several mechanisms.


2019 ◽  
Author(s):  
Eliza E. Bitter ◽  
Michelle H. Townsend ◽  
Kary Y.F. Tsai ◽  
Carolyn I. Allen ◽  
Rachel I. Erickson ◽  
...  

Abstract 1. Background: The salvage pathway enzyme thymidine kinase 1 (TK1) is elevated in the serum of several different cancer types and higher expression is associated with more aggressive tumor grade. As a result, it has potential as a biomarker for diagnosis and prognosis. Recent studies indicate that TK1 may be involved in cancer pathogenesis; however, its direct involvement has not been identified. We propose to evaluate the effects of TK1 on cancer progression in vitro through measuring cellular invasion and survival of breast cancer cells.2.Methods: Breast cancer cells MDA-MB-231, HCC 1806, and MCF7 were cultured according to standard techniques. We employed the use of TK1 target siRNA and a CRISPR-Cas9 TK1 knockout plasmid to compare transfected cell lines to wild type cell lines. Protein factors in survival and invasive pathways were also tested for correlations to TK1 in BRCA RNA-seq patient data (n=1095) using the TIMER program. Cellular invasion was quantified in cell index (factor of impedance) over a 24-hour period. Cell survival was measured by apoptosis under metabolic and DNA stress using flow cytometry. All results were statistically assessed using an ANOVA or t-test in GraphPad PRISM®.3.Results: Cellular invasion assays assessing wild type and TK1 knockdown/knockout (TK1-/-) cell types showed TK1-/- cell lines had increased invasion potential (p= 0.0001). Bioinformatically, we saw a strong overall negative correlation between apoptotic factors and TK1 (p ≤ 0.05). When testing TK1 effects on cell survival we saw a protective affect under DNA stress (p ≤ 0.05), but not under metabolic stress (p= 0.0001).4.Conclusion From cell cycle analysis, we observed a shift towards S phase in TK1-/- cells. This shift to S phase would promote growth and account for the increased cellular invasion and decrease in metabolic induced stress in TK1-/- cells. We propose that cancer cells still may elicit a cancer progressive phenotype based on effects of TK1, but that a system which isolates TK1 is not effective to understand the effects. Instead, identifying protein networks inclusive of TK1 will help to elucidate its effects on cancer progression.


2020 ◽  
Author(s):  
Jianing Yi ◽  
Pingyong Yi ◽  
Shuai Chen ◽  
Qian Li ◽  
Runzhang Wu ◽  
...  

Abstract BACKGROUND: Clinical trials have shown that pyrotinib+ capecitabine significantly improved efficacy of patients with human epidermal growth factor receptor 2(HER2) +breast cancer. However, whether pyrotinib sensitizes 5‑Fluorouracil(5‑FU)‑resistant breast cancer cells to 5‑FU is unknown. This study aimed to investigate the effects of pyrotinib on HER2+breast cancer cells with resistance to 5‑FU and provide new clues for the pyrotinib treatment in 5-FU-resistant breast cancer.METHODS: the 5‑FU‑resistant breast cancer cell lines SK-BR-3/FU and MAD-MB-453/FU were established by continuous exposure of the parental cells to 5‑FU.The effects of pyrotinib on these cell lines were examined by growth inhibitory activity assay, reverse transcription‑quantitative polymerase chain reaction, Western blot analysis, high-performance liquid chromatography and animal experiments.RESULTS: Pyrotinib inhibited the proliferation of 5-FU-resistant and parental HER2-positive breast cancer cells and re-sensitized resistant cells to 5-FU by decreasing the expression of thymidylate synthase(TS) and ABC transporter subfamily G member 2(ABCG2). In a xenograft model, combination treatment with 5-FU and pyrotinib showed greater antitumor activity than either agent alone. CONCLUSIONS: Our results offer a preclinical rationale for clinical investigations of combination treatment with pyrotinib and 5-FU for 5-FU-resistant HER2-positive breast cancer.


2019 ◽  
Vol 20 (12) ◽  
pp. 3080 ◽  
Author(s):  
Fan Wu ◽  
Robert D. McCuaig ◽  
Christopher R. Sutton ◽  
Abel H. Y. Tan ◽  
Yoshni Jeelall ◽  
...  

DUSP6 is a dual-specificity phosphatase (DUSP) involved in breast cancer progression, recurrence, and metastasis. DUSP6 is predominantly cytoplasmic in HER2+ primary breast cancer cells, but the expression and subcellular localization of DUSPs, especially DUSP6, in HER2-positive circulating tumor cells (CTCs) is unknown. Here we used the DEPArray system to identify and isolate CTCs from metastatic triple negative breast cancer (TNBC) patients and performed single-cell NanoString analysis to quantify cancer pathway gene expression in HER2-positive and HER2-negative CTC populations. All TNBC patients contained HER2-positive CTCs. HER2-positive CTCs were associated with increased ERK1/ERK2 expression, which are direct DUSP6 targets. DUSP6 protein expression was predominantly nuclear in breast CTCs and the brain metastases but not pleura or lung metastases of TNBC patients. Therefore, nuclear DUSP6 may play a role in the association with cancer spreading in TNBC patients, including brain metastasis.


2019 ◽  
Vol 18 ◽  
pp. 153473541983649 ◽  
Author(s):  
Hui-Hsien Lin ◽  
Maan Qraitem ◽  
Yue Lian ◽  
Stephanie R. Taylor ◽  
Michelle E. Farkas

From an epidemiological standpoint, disruptions to circadian rhythms have been shown to contribute to the development of various disease pathologies, including breast cancer. However, it is unclear how altered circadian rhythms are related to malignant transformations at the molecular level. In this article, a series of isogenic breast cancer cells representing disease progression was used to investigate the expression patterns of core circadian clock proteins BMAL1 and PER2. Our model is indicative of 4 stages of breast cancer and includes the following cells: MCF10A (non-malignant), MCF10AT.Cl2 (pre-malignant), MCF10Ca1h (well-differentiated, malignant), and MCF10Ca1a (poorly differentiated, malignant). While studies of circadian rhythms in cancer typically use low-resolution reverse transcription polymerase chain reaction assays, we also employed luciferase reporters BMAL1:Luc and PER2:Luc in real-time luminometry experiments. We found that across all 4 cancer stages, PER2 showed relatively stable oscillations compared with BMAL1. Period estimation using both wavelet-based and damped-sine-fitting methods showed that the periods are distributed over a wide circadian range and there is no clear progression in mean period as cancer severity progresses. Additionally, we used the K-nearest neighbors algorithm to classify the recordings according to cancer line, and found that cancer stages were largely differentiated from one another. Taken together, our data support that there are circadian discrepancies between normal and malignant cells, but it is difficult and insufficient to singularly use period evaluations to differentiate them. Future studies should employ other progressive disease models to determine whether these findings are representative across cancer types or are specific to this series.


MicroRNA ◽  
2019 ◽  
Vol 8 (2) ◽  
pp. 155-165 ◽  
Author(s):  
Evita Maria Lindholm ◽  
Suvi-Katri Leivonen ◽  
Eldri Undlien ◽  
Daniel Nebdal ◽  
Anna Git ◽  
...  

Background: HER2 positive Breast Cancers (BC) have aggressive behavior and poor prognosis. Previously, we have identified miR-342-5p as an upstream regulator of HER2 signaling, as well as inhibitor of HER2 positive BC cell line growth. Objective: Here, we aimed to further investigate the molecular mechanisms behind miR-342-5pinduced HER2 pathway deregulation. </P><P> Method: Two HER2 amplified breast cancer cell lines were transiently transfected with miR-342-5p mimic or negative control, and gene expression was analyzed by Agilent microarrays. Three clinical datasets with BC patients were used to identify correlations between candidate genes and miR-342- 5p, and associations with survival. Results: Pathway analyses of all deregulated genes revealed a significant suppression of the HER2 downstream pathways ERK/MAPK and SAPK/JNK, whereas the miR-342-5p predicted target genes were enriched for pathways associated with cell motility.Biological functions linked to mitochondrial stability were ranked among the top toxicological functions in both gene lists. Among the most deregulated genes, Cytochrome B5 Reductase 3 (CYB5R3) and Rap Guanine Nucleotide Exchange Factor 6 (RAPGEF6) significantly anticorrelated and correlated, respectively, with miR-342-5p in all three clinical BC datasets. Low CYB5R3 levels and high RAPGEF6 levels were significantly associated with survival, although this was not directly associated with HER2 expression. Conclusion: Our data suggest that miR-342-5p overexpression in HER2 positive BC cell lines elicits broad effects on HER2 downstream signaling, cell motility and mitochondrial stability. Together these effects may render cells less proliferative and more sensitive to cellular stress.


Sign in / Sign up

Export Citation Format

Share Document