scholarly journals Autonomous Wireless System for Robust and Efficient Inductive Power Transmission to Multi-Node Implants

2021 ◽  
Author(s):  
Peilong Feng ◽  
Timothy G. Constandinou

AbstractA number of recent and current efforts in brain machine interfaces are developing millimetre-sized wireless implants that achieve scalability in the number of recording channels by deploying a distributed ‘swarm’ of devices. This trend poses two key challenges for the wireless power transfer: (1) the system as a whole needs to provide sufficient power to all devices regardless of their position and orientation; (2) each device needs to maintain a stable supply voltage autonomously. This work proposes two novel strategies towards addressing these challenges: a scalable resonator array to enhance inductive networks; and a self-regulated power management circuit for use in each independent mm-scale wireless device. The proposed passive 2-tier resonant array is shown to achieve an 11.9% average power transfer efficiency, with ultra-low variability of 1.77% across the network.The self-regulated power management unit then monitors and autonomously adjusts the supply voltage of each device to lie in the range between 1.7 V-1.9 V, providing both low-voltage and over-voltage protection.

Electronics ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 431
Author(s):  
Hyeokjin Kwon ◽  
Kang-Ho Lee ◽  
Byunghun Lee

In this paper, an inductive-power-transmission (IPT) system for a wearable textile heater is proposed to comfortably provide heating to a user’s body. The conductive thread, which has high electrical resistance, was sewn into a receiver (Rx) coil on clothing to generate high temperature with a low current. The proposed wearable heaters are completely washable thanks to their nonmetallic materials, other than conductive threads in the clothing. We introduced series-none (SN) topology to eliminate a resonant capacitor in the wearable textile heater. A single resonant capacitor in a transmitter (Tx) in SN mode was implemented to resonate both Tx and Rx, resulting in increased power delivered to the load (PDL) while maintaining high-power transfer efficiency (PTE), comparable with conventional series-series (SS) topology. When the supply voltage of the power amplifier was 7 V, while the PTE of the SS and SN modes was 85.2% and 75.8%, respectively, the PDL of the SS and SN modes was 2.74 and 4.6 W, respectively.


Author(s):  
Anurag Saxena ◽  
Paras Raizada ◽  
Lok Prakash Gautam ◽  
Bharat Bhushan Khare

Wireless power transmission is the transmission of electrical energy without using any conductor or wire. It is useful to transfer electrical energy to those places where it is hard to transmit energy using conventional wires. In this chapter, the authors designed and implemented a wireless power transfer system using the basics of radio frequency energy harvesting. Numerical data are presented for power transfer efficiency of rectenna. From the simulated results, it is clear that the anticipated antenna has single band having resonant frequency 2.1 GHz. The anticipated antenna has impedance bandwidth of 62.29% for single band. The rectenna has maximum efficiency of 60% at 2.1 GHz. The maximum voltage obtained by DC-DC converter is 4V at resonant frequency.


Signals ◽  
2020 ◽  
Vol 1 (2) ◽  
pp. 209-229
Author(s):  
Mohammad Haerinia ◽  
Reem Shadid

Wireless power transmission (WPT) is a critical technology that provides an alternative for wireless power and communication with implantable medical devices (IMDs). This article provides a study concentrating on popular WPT techniques for IMDs including inductive coupling, microwave, ultrasound, and hybrid wireless power transmission (HWPT) systems. Moreover, an overview of the major works is analyzed with a comparison of the symmetric and asymmetric design elements, operating frequency, distance, efficiency, and harvested power. In general, with respect to the operating frequency, it is concluded that the ultrasound-based and inductive-based WPTs have a low operating frequency of less than 50 MHz, whereas the microwave-based WPT works at a higher frequency. Moreover, it can be seen that most of the implanted receiver’s dimension is less than 30 mm for all the WPT-based methods. Furthermore, the HWPT system has a larger receiver size compared to the other methods used. In terms of efficiency, the maximum power transfer efficiency is conducted via inductive-based WPT at 95%, compared to the achievable frequencies of 78%, 50%, and 17% for microwave-based, ultrasound-based, and hybrid WPT, respectively. In general, the inductive coupling tactic is mostly employed for transmission of energy to neuro-stimulators, and the ultrasonic method is used for deep-seated implants.


2016 ◽  
Vol 62 (4) ◽  
pp. 329-334 ◽  
Author(s):  
Raushan Kumar ◽  
Sahadev Roy ◽  
C.T. Bhunia

Abstract In this paper, we proposed an efficient full adder circuit using 16 transistors. The proposed high-speed adder circuit is able to operate at very low voltage and maintain the proper output voltage swing and also balance the power consumption and speed. Proposed design is based on CMOS mixed threshold voltage logic (MTVL) and implemented in 180nm CMOS technology. In the proposed technique the most time-consuming and power consuming XOR gates and multiplexer are designed using MTVL scheme. The maximum average power consumed by the proposed circuit is 6.94μW at 1.8V supply voltage and frequency of 500 MHz, which is less than other conventional methods. Power, delay, and area are optimized by using pass transistor logic and verified using the SPICE simulation tool at desired broad frequency range. It is also observed that the proposed design may be successfully utilized in many cases, especially whenever the lowest power consumption and delay are aimed.


Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1348
Author(s):  
Yingqin Zeng ◽  
Conghui Lu ◽  
Cancan Rong ◽  
Xiong Tao ◽  
Xiaobo Liu ◽  
...  

In a wireless power transfer (WPT) system, the power transfer efficiency (PTE) decreases sharply with the increase in transfer distance. Metamaterials (MMs) have shown great potential to enhance PTE in mid-range WPT systems. In this paper, we propose two MM slabs of a 3 × 3 array to enhance the magnetic coupling. The MM unit cell was designed by using square spiral patterns on a thin printed circuit board (PCB). Moreover, the asymmetric four-coil WPT system was designed and built based on the practical application scenario of wireless charging for unmanned devices. The simulation and experimental results show that two MM slabs can enhance power transmission capability better than one MM slab. By optimizing the position and spacing of two MM slabs, the PTE was significantly improved at a mid-range distance. The measured PTEs of a system with two MM slabs can reach 72.05%, 64.33% and 49.63% at transfer distances of 80, 100 and 120 cm. When the transfer distance is 100 cm, the PTE of a system with MMs is 33.83% higher than that without MMs. Furthermore, the receiving and load coils were integrated, and the effect of coil offset on PTE was studied.


Energies ◽  
2018 ◽  
Vol 11 (8) ◽  
pp. 2159 ◽  
Author(s):  
Zhaohong Ye ◽  
Yue Sun ◽  
Xiufang Liu ◽  
Peiyue Wang ◽  
Chunsen Tang ◽  
...  

In order to implement the omnidirectional wireless power transfer (WPT), a novel three-phase-shifted drive omnidirectional WPT system is proposed. This system is comprised of three independent phase-adjusted excitation sources, three orthogonal transmitting coils, and one planar receiving coil. Based on the mutual coupling theory, the power transfer efficiency is derived and the corresponding control mechanism for maximizing this efficiency is presented. This control mechanism only depends on the currents’ root-mean-square (RMS) values of the three transmitting coils and simple calculations after each location and/or posture change of the receiving coil, which provides the real-time possibility to design an omnidirectional WPT system comparing with the other omnidirectional systems. In aid of computer emulation technique, the efficiency characteristic versus the omnidirectional location and posture of the receiving coil is analyzed, and the analytical results verify the validity of the control mechanism. Lastly, a hardware prototype has been set up, and its omnidirectional power transmission capacity has been successfully verified. The experimental results show that the wireless power is omnidirectional and it can be effectively transmitted to a load even though its receiving coil moves and/or rotates in a 3-D energy region.


2018 ◽  
Vol 10 (9) ◽  
pp. 168781401879742
Author(s):  
Wen Haibing ◽  
Song Baowei ◽  
Zhang Kehan ◽  
Yan Zhengchao

Autonomous underwater vehicle is a class of intelligent robots, which has been widely used in ocean observatory. Inductive power transmission is a good way to supply power and extend the working endurance of autonomous underwater vehicle. The power transfer characteristic depends on the electromagnetic actuator. A novel electromagnetic actuator has been proposed for different traditional autonomous underwater vehicle docking applications in this study. At first, the structure of electromagnetic actuator and assembled configurations for autonomous underwater vehicle submerged docks was given. Then, the mutual-coupling circuit and reluctance model were built. At last, in order to verify and test this electromagnetic actuator’s power transfer characteristics, an underwater test setup was built and used in both laboratory experiment and in a modeled autonomous underwater vehicle power cabin. The test results showed that the novel electromagnetic actuator could reach the highest power transmission efficiency of 78.1% at the frequency of 115 kHz, while the output power of inductive power transmission system is 75 W at 5 mm gap in working condition. Thus, it is suitable for autonomous underwater vehicle power feeding.


Sign in / Sign up

Export Citation Format

Share Document