scholarly journals Macroscopic quantities of collective brain activity during wakefulness and anesthesia

2021 ◽  
Author(s):  
Adrián Ponce-Alvarez ◽  
Lynn Uhrig ◽  
Nikolas Deco ◽  
Camilo M. Signorelli ◽  
Morten L. Kringelbach ◽  
...  

AbstractThe study of states of arousal is key to understand the principles of consciousness. Yet, how different brain states emerge from the collective activity of brain regions remains unknown. Here, we studied the fMRI brain activity of monkeys during wakefulness and anesthesia-induced loss of consciousness. Using maximum entropy models, we derived collective, macroscopic properties that quantify the system’s capabilities to produce work, to contain information and to transmit it, and that indicate a phase transition from critical awake dynamics to supercritical anesthetized states. Moreover, information-theoretic measures identified those parameters that impacted the most the network dynamics. We found that changes in brain state and in state of consciousness primarily depended on changes in network couplings of insular, cingulate, and parietal cortices. Our findings suggest that the brain state transition underlying the loss of consciousness is predominantly driven by the uncoupling of specific brain regions from the rest of the network.

2020 ◽  
Author(s):  
A. Grigis ◽  
J. Tasserie ◽  
V. Frouin ◽  
B. Jarraya ◽  
L. Uhrig

AbstractDecoding the levels of consciousness from cortical activity recording is a major challenge in neuroscience. Using clustering algorithms, we previously demonstrated that resting-state functional MRI (rsfMRI) data can be split into several clusters also called “brain states” corresponding to “functional configurations” of the brain. Here, we propose to use a supervised machine learning method based on artificial neural networks to predict functional brain states across levels of consciousness from rsfMRI. Because it is key to consider the topology of brain regions used to build the dynamical functional connectivity matrices describing the brain state at a given time, we applied BrainNetCNN, a graph-convolutional neural network (CNN), to predict the brain states in awake and anesthetized non-human primate rsfMRI data. BrainNetCNN achieved a high prediction accuracy that lies in [0.674, 0.765] depending on the experimental settings. We propose to derive the set of connections found to be important for predicting a brain state, reflecting the level of consciousness. The results demonstrate that deep learning methods can be used not only to predict brain states but also to provide additional insight on cortical signatures of consciousness with potential clinical consequences for the monitoring of anesthesia and the diagnosis of disorders of consciousness.


2017 ◽  
Author(s):  
Giri P. Krishnan ◽  
Oscar C. González ◽  
Maxim Bazhenov

AbstractResting or baseline state low frequency (0.01-0.2 Hz) brain activity has been observed in fMRI, EEG and LFP recordings. These fluctuations were found to be correlated across brain regions, and are thought to reflect neuronal activity fluctuations between functionally connected areas of the brain. However, the origin of these infra-slow fluctuations remains unknown. Here, using a detailed computational model of the brain network, we show that spontaneous infra-slow (< 0.05 Hz) fluctuations could originate due to the ion concentration dynamics. The computational model implemented dynamics for intra and extracellular K+ and Na+ and intracellular Cl- ions, Na+/K+ exchange pump, and KCC2 co-transporter. In the network model representing resting awake-like brain state, we observed slow fluctuations in the extracellular K+ concentration, Na+/K+ pump activation, firing rate of neurons and local field potentials. Holding K+ concentration constant prevented generation of these fluctuations. The amplitude and peak frequency of this activity were modulated by Na+/K+ pump, AMPA/GABA synaptic currents and glial properties. Further, in a large-scale network with long-range connections based on CoCoMac connectivity data, the infra-slow fluctuations became synchronized among remote clusters similar to the resting-state networks observed in vivo. Overall, our study proposes that ion concentration dynamics mediated by neuronal and glial activity may contribute to the generation of very slow spontaneous fluctuations of brain activity that are observed as the resting-state fluctuations in fMRI and EEG recordings.


2017 ◽  
Author(s):  
Leonhard Waschke ◽  
Malte Wöestmann ◽  
Jonas Obleser

AbstractSensory representations of the physical world and thus human percepts are susceptible to fluctuations in brain state or “neural irregularity”. Furthermore, aging brains display altered levels of irregularity. We here show that a single, within-trial information-theoretic measure (weighted permutation entropy) captures neural irregularity in the human electroencephalogram as a proxy for both, trait-like differences between individuals of varying age, and state-like fluctuations that bias perceptual decisions. First, the overall level of neural irregularity increased with participants‘ age, paralleled by a decrease in variability over time, likely indexing age-related disintegration on structural and functional levels of brain activity. Second, states of higher neural irregularity were associated with optimized sensory encoding and a subsequently increased probability of choosing the first of two physically identical stimuli. In sum, neural irregularity not only characterizes behaviorally relevant brain states, but also can identify trait-like changes that come with age.


2021 ◽  
Author(s):  
S. Parker Singleton ◽  
Andrea I Luppi ◽  
Robin L. Carhart-Harris ◽  
Josephine Cruzat ◽  
Leor Roseman ◽  
...  

Psychedelics like lysergic acid diethylamide (LSD) offer a powerful window into the function of the human brain and mind, by temporarily altering subjective experience through their neurochemical effects. The RElaxed Beliefs Under Psychedelics (REBUS) model postulates that 5-HT2a receptor agonism allows the brain to explore its dynamic landscape more readily, as suggested by more diverse (entropic) brain activity. Formally, this effect is theorized to correspond to a reduction in the energy required to transition between different brain-states, i.e. a ″flattening of the energy landscape.″ However, this hypothesis remains thus far untested. Here, we leverage network control theory to map the brain′s energy landscape, by quantifying the energy required to transition between recurrent brain states. In accordance with the REBUS model, we show that LSD reduces the energy required for brain-state transitions, and, furthermore, that this reduction in energy correlates with more frequent state transitions and increased entropy of brain-state dynamics. Through network control analysis that incorporates the spatial distribution of 5-HT2a receptors, we demonstrate the specific role of this receptor in flattening the brain′s energy landscape. Also, in accordance with REBUS, we show that the occupancy of bottom-up states is increased by LSD. In addition to validating fundamental predictions of the REBUS model of psychedelic action, this work highlights the potential of receptor-informed network control theory to provide mechanistic insights into pharmacological modulation of brain dynamics.


2021 ◽  
Author(s):  
Kangjoo Lee ◽  
Corey Horien ◽  
David O'Connor ◽  
Bronwen Garand-Sheridan ◽  
Fuyuze Tokoglu ◽  
...  

Even when subjects are at rest, it is thought that brain activity is organized into distinct brain states during which reproducible patterns are observable. Yet, it is unclear how to define or distinguish different brain states. A potential source of brain state variation is arousal, which may play a role in modulating functional interactions between brain regions. Here, we use simultaneous resting state functional magnetic resonance imaging and pupillometry to study the impact of arousal levels indexed by pupil area on the integration of large-scale brain networks. We employ a novel sparse dictionary learning-based method to identify hub regions participating in between-network integration stratified by arousal, by measuring k-hubness, the number (k) of functionally overlapping networks in each brain region. We show evidence of a brain-wide decrease in between-network integration and inter-subject variability at low relative to high arousal, with differences emerging across regions of the frontoparietal, default mode, motor, limbic, and cerebellum networks. State-dependent changes in k-hubness relate to the actual patterns of network integration within these hubs, suggesting a brain state transition from high to low arousal characterized by global synchronization and reduced network overlaps. We demonstrate that arousal is not limited to specific brain areas known to be directly associated with arousal regulation, but instead has a brain-wide impact that involves high-level between-network communications.


2021 ◽  
Author(s):  
Beatrice M. Jobst ◽  
Selen Atasoy ◽  
Adrián Ponce-Alvarez ◽  
Ana Sanjuán ◽  
Leor Roseman ◽  
...  

AbstractLysergic acid diethylamide (LSD) is a potent psychedelic drug, which has seen a revival in clinical and pharmacological research within recent years. Human neuroimaging studies have shown fundamental changes in brain-wide functional connectivity and an expansion of dynamical brain states, thus raising the question about a mechanistic explanation of the dynamics underlying these alterations. Here, we applied a novel perturbational approach based on a whole-brain computational model, which opens up the possibility to externally perturb different brain regions in silico and investigate differences in dynamical stability of different brain states, i.e. the dynamical response of a certain brain region to an external perturbation. After adjusting the whole-brain model parameters to reflect the dynamics of functional magnetic resonance imaging (fMRI) BOLD signals recorded under the influence of LSD or placebo, perturbations of different brain areas were simulated by either promoting or disrupting synchronization in the regarding brain region. After perturbation offset, we quantified the recovery characteristics of the brain area to its basal dynamical state with the Perturbational Integration Latency Index (PILI) and used this measure to distinguish between the two brain states. We found significant changes in dynamical complexity with consistently higher PILI values after LSD intake on a global level, which indicates a shift of the brain’s global working point further away from a stable equilibrium as compared to normal conditions. On a local level, we found that the largest differences were measured within the limbic network, the visual network and the default mode network. Additionally, we found a higher variability of PILI values across different brain regions after LSD intake, indicating higher response diversity under LSD after an external perturbation. Our results provide important new insights into the brain-wide dynamical changes underlying the psychedelic state - here provoked by LSD intake - and underline possible future clinical applications of psychedelic drugs in particular psychiatric disorders.HighlightsNovel offline perturbational method applied on functional magnetic resonance imaging (fMRI) data under the effect of lysergic acid diethylamide (LSD)Shift of brain’s global working point to more complex dynamics after LSD intakeConsistently longer recovery time after model perturbation under LSD influenceStrongest effects in resting state networks relevant for psychedelic experienceHigher response diversity across brain regions under LSD influence after an external in silico perturbation


2020 ◽  
Author(s):  
Daniele Grattarola ◽  
Lorenzo Livi ◽  
Cesare Alippi ◽  
Richard Wennberg ◽  
Taufik Valiante

Abstract Graph neural networks (GNNs) and the attention mechanism are two of the most significant advances in artificial intelligence methods over the past few years. The former are neural networks able to process graph-structured data, while the latter learns to selectively focus on those parts of the input that are more relevant for the task at hand. In this paper, we propose a methodology for seizure localisation which combines the two approaches. Our method is composed of several blocks. First, we represent brain states in a compact way by computing functional networks from intracranial electroencephalography recordings, using metrics to quantify the coupling between the activity of different brain areas. Then, we train a GNN to correctly distinguish between functional networks associated with interictal and ictal phases. The GNN is equipped with an attention-based layer which automatically learns to identify those regions of the brain (associated with individual electrodes) that are most important for a correct classification. The localisation of these regions is fully unsupervised, meaning that it does not use any prior information regarding the seizure onset zone. We report results both for human patients and for simulators of brain activity. We show that the regions of interest identified by the GNN strongly correlate with the localisation of the seizure onset zone reported by electroencephalographers. We also show that our GNN exhibits uncertainty on those patients for which the clinical localisation was also unsuccessful, highlighting the robustness of the proposed approach.


2019 ◽  
Author(s):  
Jarno Tuominen ◽  
Sakari Kallio ◽  
Valtteri Kaasinen ◽  
Henry Railo

Can the brain be shifted into a different state using a simple social cue, as tests on highly hypnotisable subjects would suggest? Demonstrating an altered brain state is difficult. Brain activation varies greatly during wakefulness and can be voluntarily influenced. We measured the complexity of electrophysiological response to transcranial magnetic stimulation (TMS) in one “hypnotic virtuoso”. Such a measure produces a response outside the subject’s voluntary control and has been proven adequate for discriminating conscious from unconscious brain states. We show that a single-word hypnotic induction robustly shifted global neural connectivity into a state where activity remained sustained but failed to ignite strong, coherent activity in frontoparietal cortices. Changes in perturbational complexity indicate a similar move toward a more segregated state. We interpret these findings to suggest a shift in the underlying state of the brain, likely moderating subsequent hypnotic responding. [preprint updated 20/02/2020]


2021 ◽  
Author(s):  
Takashi Nakano ◽  
Masahiro Takamura ◽  
Haruki Nishimura ◽  
Maro Machizawa ◽  
Naho Ichikawa ◽  
...  

AbstractNeurofeedback (NF) aptitude, which refers to an individual’s ability to change its brain activity through NF training, has been reported to vary significantly from person to person. The prediction of individual NF aptitudes is critical in clinical NF applications. In the present study, we extracted the resting-state functional brain connectivity (FC) markers of NF aptitude independent of NF-targeting brain regions. We combined the data in fMRI-NF studies targeting four different brain regions at two independent sites (obtained from 59 healthy adults and six patients with major depressive disorder) to collect the resting-state fMRI data associated with aptitude scores in subsequent fMRI-NF training. We then trained the regression models to predict the individual NF aptitude scores from the resting-state fMRI data using a discovery dataset from one site and identified six resting-state FCs that predicted NF aptitude. Next we validated the prediction model using independent test data from another site. The result showed that the posterior cingulate cortex was the functional hub among the brain regions and formed predictive resting-state FCs, suggesting NF aptitude may be involved in the attentional mode-orientation modulation system’s characteristics in task-free resting-state brain activity.


2020 ◽  
Vol 10 (12) ◽  
pp. 936
Author(s):  
Yujia Wu ◽  
Jingwen Ma ◽  
Lei Cai ◽  
Zengjian Wang ◽  
Miao Fan ◽  
...  

It is unclear whether the brain activity during phonological processing of second languages (L2) is similar to that of the first language (L1) in trilingual individuals, especially when the L1 is logographic, and the L2s are logographic and alphabetic, respectively. To explore this issue, this study examined brain activity during visual and auditory word rhyming tasks in Cantonese–Mandarin–English trilinguals. Thirty Chinese college students whose L1 was Cantonese and L2s were Mandarin and English were recruited. Functional magnetic resonance imaging (fMRI) was conducted while subjects performed visual and auditory word rhyming tasks in three languages (Cantonese, Mandarin, and English). The results revealed that in Cantonese–Mandarin–English trilinguals, whose L1 is logographic and the orthography of their L2 is the same as L1—i.e., Mandarin and Cantonese, which share the same set of Chinese characters—the brain regions for the phonological processing of L2 are different from those of L1; when the orthography of L2 is quite different from L1, i.e., English and Cantonese who belong to different writing systems, the brain regions for the phonological processing of L2 are similar to those of L1. A significant interaction effect was observed between language and modality in bilateral lingual gyri. Regions of interest (ROI) analysis at lingual gyri revealed greater activation of this region when using English than Cantonese and Mandarin in visual tasks.


Sign in / Sign up

Export Citation Format

Share Document