scholarly journals SLC4A2 Anion Exchanger Promotes Tumor Cell Malignancy via Enhancing H+ Leak across Golgi Membranes

2021 ◽  
Author(s):  
Elham Khosrowabadi ◽  
Antti Rivinoja ◽  
Maija Risteli ◽  
Anne Tuomisto ◽  
Tuula Salo ◽  
...  

AbstractProper functioning of each secretory and endocytic compartment relies on its unique pH micro-environment that is known to be dictated by the rates of V-ATPase-mediated H+ pumping and its leakage back to the cytoplasm via an elusive “H+ leak” pathway. Here, we show that this proton leak across Golgi membranes involves AE2a (SLC4A2a)-mediated bicarbonate-chloride exchange, as it is strictly dependent on both bicarbonate import (in exchange of chloride export) and the AE2a expression level in the cells. Imported bicarbonate anions and luminal protons then facilitate a common buffering reaction that yields carbon dioxide and water before their egress back to the cytoplasm via diffusion or water channels. The high surface-volume ratio of flattened Golgi cisternae helps this process, as their shape is optimal for water and gas exchange. Interestingly, this pathway is often upregulated in cancers and established cancer cell lines, and responsible for their markedly elevated Golgi resting pH and attenuated glycosylation potential. Accordingly, AE2 knockdown in SW-48 colorectal cancer cells was able to restore these two phenomena, and at the same time, to reverse cells’ invasive and anchorage-independent growth phenotype. These findings suggest that a malignant cell can be returned to a benign state by normalizing its Golgi resting pH.

Author(s):  
Elham Khosrowabadi ◽  
Antti Rivinoja ◽  
Maija Risteli ◽  
Anne Tuomisto ◽  
Tuula Salo ◽  
...  

AbstractProper functioning of each secretory and endocytic compartment relies on its unique pH micro-environment that is known to be dictated by the rates of V-ATPase-mediated H+ pumping and its leakage back to the cytoplasm via an elusive “H+ leak” pathway. Here, we show that this proton leak across Golgi membranes is mediated by the AE2a (SLC4A2a)-mediated bicarbonate-chloride exchange, as it is strictly dependent on bicarbonate import (in exchange for chloride export) and the expression level of the Golgi-localized AE2a anion exchanger. In the acidic Golgi lumen, imported bicarbonate anions and protons then facilitate a common buffering reaction that yields carbon dioxide and water before their egress back to the cytoplasm via diffusion or water channels. The flattened morphology of the Golgi cisternae helps this process, as their high surface-volume ratio is optimal for water and gas exchange. Interestingly, this net acid efflux pathway is often upregulated in cancers and established cancer cell lines, and responsible for their markedly elevated Golgi resting pH and attenuated glycosylation potential. Accordingly, AE2 knockdown in SW-48 colorectal cancer cells was able to restore these two phenomena, and at the same time, reverse their invasive and anchorage-independent growth phenotype. These findings suggest a possibility to return malignant cells to a benign state by restoring Golgi resting pH.


2021 ◽  
Vol 22 (12) ◽  
pp. 6357
Author(s):  
Kinga Halicka ◽  
Joanna Cabaj

Sensors and biosensors have found applications in many areas, e.g., in medicine and clinical diagnostics, or in environmental monitoring. To expand this field, nanotechnology has been employed in the construction of sensing platforms. Because of their properties, such as high surface area to volume ratio, nanofibers (NFs) have been studied and used to develop sensors with higher loading capacity, better sensitivity, and faster response time. They also allow to miniaturize designed platforms. One of the most commonly used techniques of the fabrication of NFs is electrospinning. Electrospun NFs can be used in different types of sensors and biosensors. This review presents recent studies concerning electrospun nanofiber-based electrochemical and optical sensing platforms for the detection of various medically and environmentally relevant compounds, including glucose, drugs, microorganisms, and toxic metal ions.


Author(s):  
Cynthia Nagy ◽  
Robert Huszank ◽  
Attila Gaspar

AbstractThis paper aims at studying open channel geometries in a layer-bed-type immobilized enzyme reactor with computer-aided simulations. The main properties of these reactors are their simple channel pattern, simple immobilization procedure, regenerability, and disposability; all these features make these devices one of the simplest yet efficient enzymatic microreactors. The high surface-to-volume ratio of the reactor was achieved using narrow (25–75 μm wide) channels. The simulation demonstrated that curves support the mixing of solutions in the channel even in strong laminar flow conditions; thus, it is worth including several curves in the channel system. In the three different designs of microreactor proposed, the lengths of the channels were identical, but in two reactors, the liquid flow was split to 8 or 32 parallel streams at the inlet of the reactor. Despite their overall higher volumetric flow rate, the split-flow structures are advantageous due to the increased contact time. Saliva samples were used to test the efficiencies of the digestions in the microreactors. Graphical abstract


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1109
Author(s):  
Varnakavi. Naresh ◽  
Nohyun Lee

A biosensor is an integrated receptor-transducer device, which can convert a biological response into an electrical signal. The design and development of biosensors have taken a center stage for researchers or scientists in the recent decade owing to the wide range of biosensor applications, such as health care and disease diagnosis, environmental monitoring, water and food quality monitoring, and drug delivery. The main challenges involved in the biosensor progress are (i) the efficient capturing of biorecognition signals and the transformation of these signals into electrochemical, electrical, optical, gravimetric, or acoustic signals (transduction process), (ii) enhancing transducer performance i.e., increasing sensitivity, shorter response time, reproducibility, and low detection limits even to detect individual molecules, and (iii) miniaturization of the biosensing devices using micro-and nano-fabrication technologies. Those challenges can be met through the integration of sensing technology with nanomaterials, which range from zero- to three-dimensional, possessing a high surface-to-volume ratio, good conductivities, shock-bearing abilities, and color tunability. Nanomaterials (NMs) employed in the fabrication and nanobiosensors include nanoparticles (NPs) (high stability and high carrier capacity), nanowires (NWs) and nanorods (NRs) (capable of high detection sensitivity), carbon nanotubes (CNTs) (large surface area, high electrical and thermal conductivity), and quantum dots (QDs) (color tunability). Furthermore, these nanomaterials can themselves act as transduction elements. This review summarizes the evolution of biosensors, the types of biosensors based on their receptors, transducers, and modern approaches employed in biosensors using nanomaterials such as NPs (e.g., noble metal NPs and metal oxide NPs), NWs, NRs, CNTs, QDs, and dendrimers and their recent advancement in biosensing technology with the expansion of nanotechnology.


2020 ◽  
Vol 6 (3) ◽  
pp. 155-158
Author(s):  
Katharina Wulf ◽  
Volkmar Senz ◽  
Thomas Eickner ◽  
Sabine Illner

AbstractIn recent years, nanofiber based materials have emerged as especially interesting for several biomedical applications, regarding their high surface to volume ratio. Due to the superficial nano- and microstructuring and the different wettability compared to nonstructured surfaces, the water absorption is an important parameter with respect to the degradation stability, thermomechanic properties and drug release properties, depending on the type of polymer [1]. In this investigation, the water absorption of different non- and plasma modified biostable nanofiber nonwovens based on polyurethane, polyester and polyamide were analysed and compared. Also, the water absorption by specified water wetting, the contact angle and morphology changes were examined. The results show that the water uptake is highly dependent on the surface modification and the polymer composition itself and can therefore be partially changed.


Nanophotonics ◽  
2020 ◽  
Vol 9 (15) ◽  
pp. 4497-4503
Author(s):  
Liying Zhang ◽  
Xiangqian Xiu ◽  
Yuewen Li ◽  
Yuxia Zhu ◽  
Xuemei Hua ◽  
...  

AbstractVertically aligned nanowire arrays, with high surface-to-volume ratio and efficient light-trapping absorption, have attracted much attention for photoelectric devices. In this paper, vertical β-Ga2O3 nanowire arrays with an average diameter/height of 110/450 nm have been fabricated by the inductively coupled plasma etching technique. Then a metal-semiconductor-metal structured solar-blind photodetector (PD) has been fabricated by depositing interdigital Ti/Au electrodes on the nanowire arrays. The fabricated β-Ga2O3 nanowire PD exhibits ∼10 times higher photocurrent and responsivity than the corresponding film PD. Moreover, it also possesses a high photocurrent to dark current ratio (Ilight/Idark) of ∼104 and a ultraviolet/visible rejection ratio (R260 nm/R400 nm) of 3.5 × 103 along with millisecond-level photoresponse times.


Geofluids ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-26 ◽  
Author(s):  
Helge Skarphagen ◽  
David Banks ◽  
Bjørn S. Frengstad ◽  
Harald Gether

Borehole thermal energy storage (BTES) exploits the high volumetric heat capacity of rock-forming minerals and pore water to store large quantities of heat (or cold) on a seasonal basis in the geological environment. The BTES is a volume of rock or sediment accessed via an array of borehole heat exchangers (BHE). Even well-designed BTES arrays will lose a significant quantity of heat to the adjacent and subjacent rocks/sediments and to the surface; both theoretical calculations and empirical observations suggest that seasonal thermal recovery factors in excess of 50% are difficult to obtain. Storage efficiency may be dramatically reduced in cases where (i) natural groundwater advection through the BTES removes stored heat, (ii) extensive free convection cells (thermosiphons) are allowed to form, and (iii) poor BTES design results in a high surface area/volume ratio of the array shape, allowing high conductive heat losses. The most efficient array shape will typically be a cylinder with similar dimensions of diameter and depth, preferably with an insulated top surface. Despite the potential for moderate thermal recovery, the sheer volume of thermal storage that the natural geological environment offers can still make BTES a very attractive strategy for seasonal thermal energy storage within a “smart” district heat network, especially when coupled with more efficient surficial engineered dynamic thermal energy stores (DTES).


2011 ◽  
Vol 295-297 ◽  
pp. 813-816 ◽  
Author(s):  
Li Liu

Silicon dioxide-based nanocomposites offer large loading capacity for various doping chemicals or molecular complexes, high surface to volume ratio and customizable surface chemistry for the creation and development of novel sensors and devices [1-2]. When compared with other sol-gel materials, xerogels represent a class of nanocomposites that are relatively easy to fabricate but with unique thermal, acoustic, optical and mechanical properties for rapid sensor or device prototyping development [3-4]. Xerogels in solids are formed by controlled evaporation of the liquid in the hydro-gel. Their porosity and morphology depend largely on the temperature, gel chemical compositions and pH in the fabrication process. When impregnated with fluorescent compounds in their nanosize cavities, the doped xerogels exhibit strong and stable fluorescence properties that are useful for the developing of ion-exchange sensors and optical devices. However, the use of these fluorescently doped xerogels in forensic applications was still largely unexplored.


1990 ◽  
Vol 181 ◽  
Author(s):  
J. M. Gibson ◽  
D. Loretto ◽  
D. Cherns

ABSTRACTWe have studied the formation of metal silicides in-situ in an ultra-high vacuum transmission electron microscope. Metals were deposited on in-situ cleaned, reconstructed silicon surfaces and annealed. For the metals Ni and Co, we find that the phase sequence in ultra-thin films is different from that seen in ≈1000 Å thick films, and attribute this to the high surface-to-volume ratio. In general reactions occur at room temperature, to form an epitaxial phase if possible. We report preliminary new results on the formation of Pd2Si.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Nishchay A. Isaac ◽  
Johannes Reiprich ◽  
Leslie Schlag ◽  
Pedro H. O. Moreira ◽  
Mostafa Baloochi ◽  
...  

AbstractThis study demonstrates the fabrication of self-aligning three-dimensional (3D) platinum bridges for ammonia gas sensing using gas-phase electrodeposition. This deposition scheme can guide charged nanoparticles to predetermined locations on a surface with sub-micrometer resolution. A shutter-free deposition is possible, preventing the use of additional steps for lift-off and improving material yield. This method uses a spark discharge-based platinum nanoparticle source in combination with sequentially biased surface electrodes and charged photoresist patterns on a glass substrate. In this way, the parallel growth of multiple sensing nodes, in this case 3D self-aligning nanoparticle-based bridges, is accomplished. An array containing 360 locally grown bridges made out of 5 nm platinum nanoparticles is fabricated. The high surface-to-volume ratio of the 3D bridge morphology enables fast response and room temperature operated sensing capabilities. The bridges are preconditioned for ~ 24 h in nitrogen gas before being used for performance testing, ensuring drift-free sensor performance. In this study, platinum bridges are demonstrated to detect ammonia (NH3) with concentrations between 1400 and 100 ppm. The sensing mechanism, response times, cross-sensitivity, selectivity, and sensor stability are discussed. The device showed a sensor response of ~ 4% at 100 ppm NH3 with a 70% response time of 8 min at room temperature.


Sign in / Sign up

Export Citation Format

Share Document