scholarly journals Superantigenic TCR Vbeta 21.3 signature in Multisystem Inflammatory Syndrome in Children

Author(s):  
Marion Moreews ◽  
Kenz Le Gouge ◽  
Alicia Bellomo ◽  
Christophe Malcus ◽  
Rémi Pescarmona ◽  
...  

AbstractObjectivesMultiple Inflammatory Syndrome in Children (MIS-C) is the most severe pediatric form of COVID-19 and occurs in previously healthy children. MIS-C combines features of Kawasaki disease and Toxic Shock Syndrome (TSS).MethodsChildren with suspected MIS-C were included within the first week of diagnosis and a large scale immunoassay was performed to determein the immunologic signature of these patients.ResultsWe characterized the immunological profile of 27 MIS-C cases in comparison with 4 KD and 4 TSS cases. Similarly to TSS, an increase of serum inflammatory cytokines (IL-6, TNF-a, CD25s) was observed in MIS-C contrasting with low expression of HLA-DR monocytes, a feature often associated with immune paralysis. Expansions of T cells expressing the Vβ21.3 T cell receptor β chain variable region were detected in both CD4 and CD8 subsets in almost 50% of patients and Vβ21.3-positive T cells expressed high level of HLA-DR highlighting their specific activation. TCR sequencing uncovered the polyclonal nature of the Vβ 21.3+ population. SARS-CoV2 antigene-specific production of interferon gamma in T cells was not increased in MIS-C T cells compared to COVID-19 patients suggesting the antigen-specific immune response in MIS-C patients is not pivotal to the manifestation.ConclusionsOur findings argue in favor of a strong activation of the immune system related to a superantigenic immune response in MIS-C with a specific polyclonal Vβ21.3 T cell expansion.Key messagesWhat is already known about this subject ?MIS-C occurs 3-5 weeks after acute SARS-CoV2 infection and overlap features of Toxic Shock syndrome and Kawasaki disease.MIS-C appears different in term of cytokine and autoantibodies generation from KD with subtle signs of T cells activationWhat does this study add?This study demonstrates that Vβ21.3+ CD4 and CD8 T cells are highly increased in about 50% of MIS-C and distinctive of the Vβ2+ expansion observed in toxic shock syndrome in This reflects a specific T cell activation and cytokine release syndrome similar to toxic shock syndromeHow mich this impact on clinical practice or future developments?Vβ21.3+ signature can be available on a short term basis by flowcytometry and represents a signature of the MIS-C.As for TSS, immunomodulating therapies may revert the superantigenic activation and resolve this life threatening pediatric condition.

2021 ◽  
Vol 6 (59) ◽  
pp. eabh1516
Author(s):  
Marion Moreews ◽  
Kenz Le Gouge ◽  
Samira Khaldi-Plassart ◽  
Rémi Pescarmona ◽  
Anne-Laure Mathieu ◽  
...  

Multiple Inflammatory Syndrome in Children (MIS-C) is a delayed and severe complication of SARS-CoV-2 infection that strikes previously healthy children. As MIS-C combines clinical features of Kawasaki disease and Toxic Shock Syndrome (TSS), we aimed to compare the immunological profile of pediatric patients with these different conditions. We analyzed blood cytokine expression, and the T cell repertoire and phenotype in 36 MIS-C cases, which were compared to 16 KD, 58 TSS, and 42 COVID-19 cases. We observed an increase of serum inflammatory cytokines (IL-6, IL-10, IL-18, TNF-α, IFNγ, CD25s, MCP1, IL-1RA) in MIS-C, TSS and KD, contrasting with low expression of HLA-DR in monocytes. We detected a specific expansion of activated T cells expressing the Vβ21.3 T cell receptor β chain variable region in both CD4 and CD8 subsets in 75% of MIS-C patients and not in any patient with TSS, KD, or acute COVID-19; this correlated with the cytokine storm detected. The T cell repertoire returned to baseline within weeks after MIS-C resolution. Vβ21.3+ T cells from MIS-C patients expressed high levels of HLA-DR, CD38 and CX3CR1 but had weak responses to SARS-CoV-2 peptides in vitro. Consistently, the T cell expansion was not associated with specific classical HLA alleles. Thus, our data suggested that MIS-C is characterized by a polyclonal Vβ21.3 T cell expansion not directed against SARS-CoV-2 antigenic peptides, which is not seen in KD, TSS and acute COVID-19.


1990 ◽  
Vol 172 (3) ◽  
pp. 981-984 ◽  
Author(s):  
Y Choi ◽  
J A Lafferty ◽  
J R Clements ◽  
J K Todd ◽  
E W Gelfand ◽  
...  

Infection with Staphylococcus aureus and the production of toxic shock syndrome toxin-1 (TSST-1) have been implicated in the pathogenesis of toxic shock syndrome. Previous in vitro studies have demonstrated that TSST-1 is a powerful but selective stimulator of human T cells, and that the majority of activated cells express the TCR V beta 2 gene segment. We therefore studied patients with toxic shock syndrome using a modification of the PCR to determine if expansion of V beta 2+ T cells is a marker of the in vivo disease process. Five of eight patients studied demonstrated markedly elevated levels of circulating V beta 2+ T cells, whereas none showed significantly elevated levels of T cells expressing other V beta gene segments. The results suggest that toxin-mediated T cell activation, which involves a large fraction of the human T cell repertoire, may be critical in the pathogenesis of this disease.


Dermatology ◽  
2021 ◽  
pp. 1-9
Author(s):  
Angelo Valerio Marzano ◽  
Nicoletta Cassano ◽  
Chiara Moltrasio ◽  
Lucio Verdoni ◽  
Giovanni Genovese ◽  
...  

<b><i>Background:</i></b> COronaVIrus Disease 2019 (COVID-19) affects children with less severe symptoms than adults. However, severe COVID-19 paediatric cases are increasingly reported, including patients with Kawasaki disease (KD) or a multisystem inflammatory syndrome (MIS-C) that can present with features resembling KD. <b><i>Summary:</i></b> MIS-C is an emerging severe paediatric syndrome associated with COVID-19 that can show overlapping features of KD, KD shock syndrome, and toxic shock syndrome. MIS-C might be an inflammatory disease distinct from KD resulting from an exaggerated immune response. A high prevalence of mucocutaneous manifestations – in addition to gastrointestinal and cardiovascular involvements – was found in MIS-C. The most frequent mucocutaneous findings were conjunctivitis and rash, often described as macular and/or papular or polymorphous. In this article, we present a brief overview of MIS-C with an emphasis on mucocutaneous findings and the relationship with KD.


2021 ◽  
Vol 6 (57) ◽  
pp. eabf7570
Author(s):  
Laura A. Vella ◽  
Josephine R. Giles ◽  
Amy E. Baxter ◽  
Derek A. Oldridge ◽  
Caroline Diorio ◽  
...  

Pediatric COVID-19 following SARS-CoV-2 infection is associated with fewer hospitalizations and often milder disease than in adults. A subset of children, however, present with Multisystem Inflammatory Syndrome in Children (MIS-C) that can lead to vascular complications and shock, but rarely death. The immune features of MIS-C compared to pediatric COVID-19 or adult disease remain poorly understood. We analyzed peripheral blood immune responses in hospitalized SARS-CoV-2 infected pediatric patients (pediatric COVID-19) and patients with MIS-C. MIS-C patients had patterns of T cell-biased lymphopenia and T cell activation similar to severely ill adults, and all patients with MIS-C had SARS-CoV-2 spike-specific antibodies at admission. A distinct feature of MIS-C patients was robust activation of vascular patrolling CX3CR1+ CD8+ T cells that correlated with the use of vasoactive medication. Finally, whereas pediatric COVID-19 patients with acute respiratory distress syndrome (ARDS) had sustained immune activation, MIS-C patients displayed clinical improvement over time, concomitant with decreasing immune activation. Thus, non-MIS-C versus MIS-C SARS-CoV-2 associated illnesses are characterized by divergent immune signatures that are temporally distinct from one another and implicate CD8+ T cells in the clinical presentation and trajectory of MIS-C.


2020 ◽  
Author(s):  
Anno Saris ◽  
Tom D.Y. Reijnders ◽  
Esther J. Nossent ◽  
Alex R. Schuurman ◽  
Jan Verhoeff ◽  
...  

AbstractOur understanding of the coronavirus disease-19 (COVID-19) immune response is almost exclusively derived from studies that examined blood. To gain insight in the pulmonary immune response we analysed BALF samples and paired blood samples from 17 severe COVID-19 patients. Macrophages and T cells were the most abundant cells in BALF. In the lungs, both CD4 and CD8 T cells were predominantly effector memory cells and expressed higher levels of the exhaustion marker PD-1 than in peripheral blood. Prolonged ICU stay associated with a reduced proportion of activated T cells in peripheral blood and even more so in BALF. T cell activation in blood, but not in BALF, was higher in fatal COVID-19 cases. Increased levels of inflammatory mediators were more pronounced in BALF than in plasma. In conclusion, the bronchoalveolar immune response in COVID-19 has a unique local profile that strongly differs from the immune profile in peripheral blood.SummaryThe bronchoalveolar immune response in severe COVID-19 strongly differs from the peripheral blood immune profile. Fatal COVID-19 associated with T cell activation blood, but not in BALF.


2011 ◽  
Vol 18 (5) ◽  
pp. 815-824 ◽  
Author(s):  
Bala Ramaswami ◽  
Iulia Popescu ◽  
Camila Macedo ◽  
Chunqing Luo ◽  
Ron Shapiro ◽  
...  

ABSTRACTBK virus (BKV) nephropathy and hemorrhagic cystitis are increasingly recognized causes of disease in renal and hematopoietic stem cell transplant recipients, respectively. Functional characterization of the immune response to BKV is important for clinical diagnosis, prognosis, and vaccine design. A peptide mix (PepMix) and overlapping (OPP) or random (RPP) peptide pools derived from BKV large T antigen (LTA) were used to restimulate 14-day-expanded peripheral blood mononuclear cells (PBMC) from 27 healthy control subjects in gamma interferon (IFN-γ)-specific enzyme-linked immunospot (ELISPOT) assays. A T-cell response to LTA PepMix was detected in 15/27 subjects. A response was frequently observed with peptides derived from the helicase domain (9/15 subjects), while the DNA binding and host range domains were immunologically inert (0/15 subjects). For all nine subjects who responded to LTA peptide pools, the immune response could be explained largely by a 15-mer peptide designated P313. P313-specific CD4+T-cell clones demonstrated (i) stringent LTA peptide specificity; (ii) promiscuous recognition in the context of HLA-DR alleles; (iii) cross recognition of homologous peptides from the polyomavirus simian virus 40 (SV40); (iv) an effector memory phenotype, CD107a expression, and intracellular production of IFN-γ and tumor necrosis factor alpha (TNF-α); (v) cytotoxic activity in a chromium release assay; and (vi) the ability to directly present cognate antigen to autologous T cells. In conclusion, T-cell-mediated immunity to BKV in healthy subjects is associated with a polyfunctional population of CD4+T cells with dual T-helper and T-cytotoxic properties. HLA class II promiscuity in antigen presentation makes the targeted LTA peptide sequence a suitable candidate for inclusion in immunotherapy protocols.


Blood ◽  
1989 ◽  
Vol 74 (2) ◽  
pp. 786-792 ◽  
Author(s):  
TH Totterman ◽  
M Carlsson ◽  
B Simonsson ◽  
M Bengtsson ◽  
K Nilsson

Abstract Two-color FACS analysis was used to study activated and “functional” T and natural killer (NK) cell subsets of circulating lymphocytes in 23 patients with B-type chronic lymphocytic leukemia (B-CLL) and in 30 healthy subjects. As compared with controls, B-CLL patients had increased absolute numbers of phenotypically activated, HLA-DR+ CD4+ and CD8+ cells and T suppressor/effector (CD11b+CD8+) cells. When patients in Rai stages II through IV (n = 11) were compared with cases in Rai stages O through I (n = 12), the former group of patients had higher numbers of activated CD4+ and CD8+ T cells and decreased levels of suppressor/effector T cells. The absolute numbers of T suppressor/inducer (CD45R+CD4+) cells were elevated in patients with stage O through I disease but within normal range in stage II through IV leukemia. We further showed that the absolute numbers of NK-like (CD16+) cells and their activated counterparts (DR+CD16+) are elevated in B-CLL patients as compared with healthy subjects. The comparison of relative T and NK subsets in the blood of patients and controls showed that the proportions of CD4+, CD8+, and CD16+ cells expressing the activation marker HLA-DR were increased in B-CLL. Furthermore, the percentage of T-suppressor/inducer (CD45R+) cells within the CD4+ population was decreased in the patients. The proportion of T- suppressor/effector (CD11b+) cells within the CD8+ subset was reduced in subjects with stage II-IV disease only. When stimulated in vitro with the T-cell-dependent inducer TPA, B-CLL cells from patients in Rai stages II through IV secreted larger amounts of IgM as compared with cells from stage O through I patients. A positive correlation was observed between the degree of phenotypic activation of CD4+ T-helper cells and their functional capacity to augment IgM secretion by autologous B-CLL cells. Our findings indicate a tumor cell-directed regulatory role of T cells (and possibly NK cells as well) in B-CLL. Furthermore, monitoring of phenotypically activated and functional T- cell subsets may be helpful in the prediction of disease progression and timing of therapy in B-CLL.


2020 ◽  
Vol 27 (11) ◽  
pp. 3196-3207 ◽  
Author(s):  
Chiara Agrati ◽  
Alessandra Sacchi ◽  
Veronica Bordoni ◽  
Eleonora Cimini ◽  
Stefania Notari ◽  
...  

Abstract SARS-CoV-2 is associated with a 3.4% mortality rate in patients with severe disease. The pathogenesis of severe cases remains unknown. We performed an in-depth prospective analysis of immune and inflammation markers in two patients with severe COVID-19 disease from presentation to convalescence. Peripheral blood from 18 SARS-CoV-2-infected patients, 9 with severe and 9 with mild COVID-19 disease, was obtained at admission and analyzed for T-cell activation profile, myeloid-derived suppressor cells (MDSCs) and cytokine profiles. MDSC functionality was tested in vitro. In four severe and in four mild patients, a longitudinal analysis was performed daily from the day of admission to the early convalescent phase. Early after admission severe patients showed neutrophilia, lymphopenia, increase in effector T cells, a persisting higher expression of CD95 on T cells, higher serum concentration of IL-6 and TGF-β, and a cytotoxic profile of NK and T cells compared with mild patients, suggesting a highly engaged immune response. Massive expansion of MDSCs was observed, up to 90% of total circulating mononuclear cells in patients with severe disease, and up to 25% in the patients with mild disease; the frequency decreasing with recovery. MDSCs suppressed T-cell functions, dampening excessive immune response. MDSCs decline at convalescent phase was associated to a reduction in TGF-β and to an increase of inflammatory cytokines in plasma samples. Substantial expansion of suppressor cells is seen in patients with severe COVID-19. Further studies are required to define their roles in reducing the excessive activation/inflammation, protection, influencing disease progression, potential to serve as biomarkers of disease severity, and new targets for immune and host-directed therapeutic approaches.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 5030-5030
Author(s):  
Avital Amir ◽  
Renate S. Hagendoorn ◽  
Erik W.A. Marijt ◽  
Roelof Willemze ◽  
J.H. Frederik Falkenburg ◽  
...  

Abstract Single HLA locus mismatched stem cell transplantation (SCT) is applied in patients with hematological malignancies who may benefit from allogeneic transplantation but lack an HLA-matched donor. Although HLA disparity between patient and donor increases the risk of developing GVHD, the relative risk of GVHD after single HLA locus mismatched SCT is only 1.5 fold. In view of the high frequency of allo-HLA reactive T-cells, which is about 1000-fold higher than the frequencies of minor histocompatibility antigen specific T-cells, this risk increase is lower than could be expected. Since almost all nucleated cells express HLA class I, one would expect all single HLA class I mismatched transplanted patients to develop severe GVHD. We hypothesized therefore that the presentation of the HLA class I mismatched allele on nucleated cells of the patient is not sufficient to elicit an effective allo-immune response. We characterized the allo-immune response in a patient with acute myeloid leukemia (AML) who was treated with a T-cell depleted SCT from a sibling donor who was HLA identical except for an HLA-A2 crossover. Six months after SCT, donor lymphocyte infusion (DLI) of 2.5*10e6 T-cells/kg was given for mixed chimerism comprising 99% T-cells of patient origin. No clinical response and no GVHD developed. Twelve months after SCT 95% of T-cells were still of patient origin, and AML relapse occurred with 9% blasts in bone marrow for which a second DLI containing 7.5*10e6 T-cells/kg was given. Five weeks after the DLI the patient died of grade IV GVHD. During the GVHD, conversion to donor chimerism developed. In peripheral blood of the patient 90% of CD8 and 40% of CD4 donor T-cells were activated as determined by HLA-DR expression. To analyze the nature of the immune response, the activated CD8 and CD4 donor T-cells were single cell sorted, expanded and tested for alloreactivity and HLA restriction using cytotoxicity and cytokine production assays against a panel of target cells blocked with different HLA-mAbs. 82% of the CD8 T-cell clones were alloreactive and restricted to the allo-HLA-A2. The response was highly polyclonal as shown by the usage of different T-cell receptor Vβ chains with different CDR3 sequences. 26% of the CD4 clones were alloreactive and this response was also polyclonal. The CD4 clones were HLA-DR1 restricted and recognized donor EBV-LCL transduced with HLA-A2, indicating that the peptide recognized in HLA-DR1 was derived from the mismatched HLA-A2 molecule. The recognized epitope was demonstrated to comprise AA 103–120 derived from a hypervariable region of HLA-A2. At the time of the first DLI, only HLA class I expressing T-cells and non-hematopoietic patient derived cells were present, capable of activating the CD8 T-cells but not of triggering the CD4 response. Leukemic blasts present at the time of the second DLI, however, expressed both HLA-DR and HLA class I, and were shown to activate the CD4 as well as the CD8 clones. We hypothesize that the HLA class II expression on hematopoietic cells of the patient at the time of the relapse was essential for the development of this immune response. In conclusion, these results indicate a role for patient leukemic blasts acting as host APCs in initiating the GVH response by activating both a CD4 and CD8 T-cell response in an HLA class I mismatched setting.


2010 ◽  
Vol 207 (12) ◽  
pp. 2733-2749 ◽  
Author(s):  
Rachel S. Friedman ◽  
Peter Beemiller ◽  
Caitlin M. Sorensen ◽  
Jordan Jacobelli ◽  
Matthew F. Krummel

The real-time dynamics of the T cell receptor (TCR) reflect antigen detection and T cell signaling, providing valuable insight into the evolving events of the immune response. Despite considerable advances in studying TCR dynamics in simplified systems in vitro, live imaging of subcellular signaling complexes expressed at physiological densities in intact tissues has been challenging. In this study, we generated a transgenic mouse with a TCR fused to green fluorescent protein to provide insight into the early signaling events of the immune response. To enable imaging of TCR dynamics in naive T cells in the lymph node, we enhanced signal detection of the fluorescent TCR fusion protein and used volumetric masking with a second fluorophore to mark the T cells expressing the fluorescent TCR. These in vivo analyses and parallel experiments in vitro show minimal and transient incorporation of TCRs into a stable central supramolecular activating cluster (cSMAC) structure but strong evidence for rapid, antigen-dependent TCR internalization that was not contingent on T cell motility arrest or cSMAC formation. Short-lived antigen-independent TCR clustering was also occasionally observed. These in vivo observations demonstrate that varied TCR trafficking and cell arrest dynamics occur during early T cell activation.


Sign in / Sign up

Export Citation Format

Share Document