scholarly journals Are adaptive chemotherapy schedules robust? A three-strategy stochastic evolutionary game theory model

2021 ◽  
Author(s):  
Rajvir Dua ◽  
Yongqian Ma ◽  
Paul K. Newton

We investigate the robustness of adaptive chemotherapy schedules over repeated cycles and a wide range of tumor sizes. We introduce a non-stationary stochastic three-component fitness-dependent Moran process to quantify the variance of the response to treatment associated with multidrug adaptive schedules that are designed to mitigate chemotherapeutic resistance in an idealized (well-mixed) setting. The finite cell (N tumor cells) stochastic process consists of populations of chemosensitive cells, chemoresistant cells to drug 1, and chemoresistant cells to drug 2, and the drug interactions can be synergistic, additive, or antagonistic. First, the adaptive chemoschedule is determined by using the N → ∞ limit of the finite-cell process (i.e. the adjusted replicator equations) which is constructed by finding closed treatment response loops (which we call evolutionary cycles) in the three component phase-space. The schedules that give rise to these cycles are designed to manage chemoresistance by avoiding competitive release of the resistant cell populations. To address the question of how these cycles are likely to perform in practice over large patient populations with tumors across a range of sizes, we then consider the statistical variances associated with the approximate stochastic cycles for finite N, repeating the idealized adaptive schedule over multiple periods. For finite cell populations, the error distributions remain approximately multi-Gaussian in the principal component coordinates through the first three cycles, with variances increasing exponentially with each cycle. As the number of cycles increases, the multi-Gaussian nature of the distribution breaks down due to the fact that one of the three subpopulations typically saturates the tumor (competitive release) resulting in treatment failure. This suggests that to design an effective and repeatable adaptive chemoschedule in practice will require a highly accurate tumor model and accurate measurements of the subpopulation frequencies or the errors will quickly (exponentially) degrade its effectiveness, particularly when the drug interactions are synergistic. Possible ways to extend the efficacy of the stochastic cycles in light of the computational simulations are discussed.

Cancers ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2880
Author(s):  
Rajvir Dua ◽  
Yongqian Ma ◽  
Paul K. Newton

We investigate the robustness of adaptive chemotherapy schedules over repeated cycles and a wide range of tumor sizes. Using a non-stationary stochastic three-component fitness-dependent Moran process model (to track frequencies), we quantify the variance of the response to treatment associated with multidrug adaptive schedules that are designed to mitigate chemotherapeutic resistance in an idealized (well-mixed) setting. The finite cell (N tumor cells) stochastic process consists of populations of chemosensitive cells, chemoresistant cells to drug 1, and chemoresistant cells to drug 2, and the drug interactions can be synergistic, additive, or antagonistic. Tumor growth rates in this model are proportional to the average fitness of the tumor as measured by the three populations of cancer cells compared to a background microenvironment average value. An adaptive chemoschedule is determined by using the N→∞ limit of the finite-cell process (i.e., the adjusted replicator equations) which is constructed by finding closed treatment response loops (which we call evolutionary cycles) in the three component phase-space. The schedules that give rise to these cycles are designed to manage chemoresistance by avoiding competitive release of the resistant cell populations. To address the question of how these cycles perform in practice over large patient populations with tumors across a range of sizes, we consider the variances associated with the approximate stochastic cycles for finite N, repeating the idealized adaptive schedule over multiple periods. For finite cell populations, the distributions remain approximately multi-Gaussian in the principal component coordinates through the first three cycles, with variances increasing exponentially with each cycle. As the number of cycles increases, the multi-Gaussian nature of the distribution breaks down due to the fact that one of the three sub-populations typically saturates the tumor (competitive release) resulting in treatment failure. This suggests that to design an effective and repeatable adaptive chemoschedule in practice will require a highly accurate tumor model and accurate measurements of the sub-population frequencies or the errors will quickly (exponentially) degrade its effectiveness, particularly when the drug interactions are synergistic. Possible ways to extend the efficacy of the stochastic cycles in light of the computational simulations are discussed.


Author(s):  
P.K. Newton ◽  
Y. Ma

Chemotherapeutic resistance via the mechanism of competitive release of resistant tumor cell subpopulations is a major problem associated with cancer treatments and one of the main causes of tumor recurrence. Often, chemoresistance is mitigated by using multidrug schedules (two or more combination therapies) that can act synergistically, additively, or antagonistically on the heterogeneous population of cells as they evolve. In this paper, we develop a three-component evolutionary game theory model to design two-drug adaptive schedules (timing and dose levels associated with C1(t) and C2(t)) that mitigate chemoresistance and delay tumor recurrence in an evolving collection of tumor cells with two resistant subpopulations: R1 (sensitive to drug 1, resistant to drug 2), and R2 (sensitive to drug 2, resistant to drug 1). A key parameter, e, takes us from synergistic (e > 0), to additive (e = 0), to antagonistic (e < 0) drug interactions. In addition to the two resistant populations, the model includes a population of chemosensitive cells, S that have higher baseline fitness but are not resistant to either drug. Using the nonlinear replicator dynamical system with a payoff matrix of Prisoner’s Dilemma (PD) type (enforcing a cost to resistance), we investigate the nonlinear dynamics of the three-component system (S, R1, R2), along with an additional tumor growth model whose growth rate is a function of the fitness landscape of the tumor cell populations. We show that antagonistic drug interactions generally result in slower rates of adaptation of the resistant cells than synergistic ones, making them more effective in combating the evolution of resistance. We then design closed loops in the three-component phase space by shaping the fitness landscape of the cell populations (i.e. altering the evolutionary stable states of the game) using appropriately designed time-dependent schedules (adaptive therapy), altering the dosages and timing of the two drugs using information gleaned from constant dosing schedules. We show that the bifurcations associated with the evolutionary stable states are transcritical, and we detail a typical antagonistic bifurcation that takes place between the sensitive cell population S and the R1 population, and a synergistic bifurcation that takes place between the sensitive cell population S and the R2 population for fixed values of C1 and C2. These bifurcations help us further understand why antagonistic interactions are more effective at controlling competitive release of the resistant population than synergistic interactions in the context of an evolving tumor.


2020 ◽  
Author(s):  
Luis Anunciacao ◽  
janet squires ◽  
J. Landeira-Fernandez

One of the main activities in psychometrics is to analyze the internal structure of a test. Multivariate statistical methods, including Exploratory Factor analysis (EFA) and Principal Component Analysis (PCA) are frequently used to do this, but the growth of Network Analysis (NA) places this method as a promising candidate. The results obtained by these methods are of valuable interest, as they not only produce evidence to explore if the test is measuring its intended construct, but also to deal with the substantive theory that motivated the test development. However, these different statistical methods come up with different answers, providing the basis for different analytical and theoretical strategies when one needs to choose a solution. In this study, we took advantage of a large volume of published data (n = 22,331) obtained by the Ages and Stages Questionnaire Social-Emotional (ASQ:SE), and formed a subset of 500 children to present and discuss alternative psychometric solutions to its internal structure, and also to its subjacent theory. The analyses were based on a polychoric matrix, the number of factors to retain followed several well-known rules of thumb, and a wide range of exploratory methods was fitted to the data, including EFA, PCA, and NA. The statistical outcomes were divergent, varying from 1 to 6 domains, allowing a flexible interpretation of the results. We argue that the use of statistical methods in the absence of a well-grounded psychological theory has limited applications, despite its appeal. All data and codes are available at https://osf.io/z6gwv/.


Dermatology ◽  
2021 ◽  
pp. 1-9
Author(s):  
María Luisa Peralta-Pedrero ◽  
Denisse Herrera-Bringas ◽  
Karla Samantha Torres-González ◽  
Martha Alejandra Morales-Sánchez ◽  
Fermín Jurado Santa-Cruz ◽  
...  

<b><i>Background:</i></b> Vitiligo has an unpredictable course and a variable response to treatment. Furthermore, the improvement of some vitiligo lesions cannot be considered a guarantee of a similar response to the other lesions. Instruments for patient-reported outcome measures (PROM) can be an alternative to measure complex constructions such as clinical evolution. <b><i>Objective:</i></b> The aim of this study was to validate a PROM that allows to measure the clinical evolution of patients with nonsegmental vitiligo in a simple but standardized way that serves to gather information for a better understanding of the disease. <b><i>Methods:</i></b> The instrument was created through expert consensus and patient participation. For the validation study, a prospective cohort design was performed. The body surface area affected was measured with the Vitiligo Extension Score (VES), the extension, the stage, and the spread by the evaluation of the Vitiligo European Task Force assessment (VETFa). Reliability was determined with test-retest, construct validity through hypothesis testing, discriminative capacity with extreme groups, and response capacity by comparing initial and final measurements. <b><i>Results:</i></b> Eighteen semi-structured interviews and 7 cognitive interviews were conducted, and 4 dermatologists were consulted. The instrument Clinical Evolution-Vitiligo (CV-6) was answered by 119 patients with a minimum of primary schooling. A wide range was observed in the affected body surface; incident and prevalent cases were included. The average time to answer the CV-6 was 3.08 ± 0.58 min. In the test-retest (<i>n</i> = 53), an intraclass correlation coefficient was obtained: 0.896 (95% CI 0.82–0.94; <i>p</i> &#x3c; 0.001). In extreme groups, the mean score was 2 (2–3) and 5 (4–6); <i>p</i> &#x3c; 0.001. The initial CV-6 score was different from the final one and the change was verified with VES and VETFa (<i>p</i> &#x3c; 0.05, <i>n</i> = 92). <b><i>Conclusions:</i></b> The CV-6 instrument allows patient collaboration, it is simple and brief, and it makes it easier for the doctor to focus attention on injuries that present changes at the time of medical consultation.


Agriculture ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 680
Author(s):  
Thuy T. P. Mai ◽  
Craig M. Hardner ◽  
Mobashwer M. Alam ◽  
Robert J. Henry ◽  
Bruce L. Topp

Macadamia is a recently domesticated Australian native nut crop, and a large proportion of its wild germplasm is unexploited. Aiming to explore the existing diversity, 247 wild accessions from four species and inter-specific hybrids were phenotyped. A wide range of variation was found in growth and nut traits. Broad-sense heritability of traits were moderate (0.43–0.64), which suggested that both genetic and environmental factors are equally important for the variability of the traits. Correlations among the growth traits were significantly positive (0.49–0.76). There were significant positive correlations among the nut traits except for kernel recovery. The association between kernel recovery and shell thickness was highly significant and negative. Principal component analysis of the traits separated representative species groups. Accessions from Macadamia integrifolia Maiden and Betche, M. tetraphylla L.A.S. Johnson, and admixtures were clustered into one group and those of M. ternifolia F. Muell were separated into another group. In both M. integrifolia and M. tetraphylla groups, variation within site was greater than across sites, which suggested that the conservation strategies should concentrate on increased sampling within sites to capture wide genetic diversity. This study provides a background on the utilisation of wild germplasm as a genetic resource to be used in breeding programs and the direction for gene pool conservation.


2021 ◽  
Author(s):  
Tim Brandes ◽  
Stefano Scarso ◽  
Christian Koch ◽  
Stephan Staudacher

Abstract A numerical experiment of intentionally reduced complexity is used to demonstrate a method to classify flight missions in terms of the operational severity experienced by the engines. In this proof of concept, the general term of severity is limited to the erosion of the core flow compressor blade and vane leading edges. A Monte Carlo simulation of varying operational conditions generates a required database of 10000 flight missions. Each flight is sampled at a rate of 1 Hz. Eleven measurable or synthesizable physical parameters are deemed to be relevant for the problem. They are reduced to seven universal non-dimensional groups which are averaged for each flight. The application of principal component analysis allows a further reduction to three principal components. They are used to run a support-vector machine model in order to classify the flights. A linear kernel function is chosen for the support-vector machine due to its low computation time compared to other functions. The robustness of the classification approach against measurement precision error is evaluated. In addition, a minimum number of flights required for training and a sensible number of severity classes are documented. Furthermore, the importance to train the algorithms on a sufficiently wide range of operations is presented.


2017 ◽  
Vol 17 (4) ◽  
pp. 850-868 ◽  
Author(s):  
William Soo Lon Wah ◽  
Yung-Tsang Chen ◽  
Gethin Wyn Roberts ◽  
Ahmed Elamin

Analyzing changes in vibration properties (e.g. natural frequencies) of structures as a result of damage has been heavily used by researchers for damage detection of civil structures. These changes, however, are not only caused by damage of the structural components, but they are also affected by the varying environmental conditions the structures are faced with, such as the temperature change, which limits the use of most damage detection methods presented in the literature that did not account for these effects. In this article, a damage detection method capable of distinguishing between the effects of damage and of the changing environmental conditions affecting damage sensitivity features is proposed. This method eliminates the need to form the baseline of the undamaged structure using damage sensitivity features obtained from a wide range of environmental conditions, as conventionally has been done, and utilizes features from two extreme and opposite environmental conditions as baselines. To allow near real-time monitoring, subsequent measurements are added one at a time to the baseline to create new data sets. Principal component analysis is then introduced for processing each data set so that patterns can be extracted and damage can be distinguished from environmental effects. The proposed method is tested using a two-dimensional truss structure and validated using measurements from the Z24 Bridge which was monitored for nearly a year, with damage scenarios applied to it near the end of the monitoring period. The results demonstrate the robustness of the proposed method for damage detection under changing environmental conditions. The method also works despite the nonlinear effects produced by environmental conditions on damage sensitivity features. Moreover, since each measurement is allowed to be analyzed one at a time, near real-time monitoring is possible. Damage progression can also be given from the method which makes it advantageous for damage evolution monitoring.


2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
Vineeta Singh ◽  
Atul Kumar Gupta ◽  
S. P. Singh ◽  
Anil Kumar

Cinnamomum tamalaNees & Eberm. is an important traditional medicinal plant, mentioned in various ancient literatures such as Ayurveda. Several of its medicinal properties have recently been proved. To characterize diversity in terms of metabolite profiles ofCinnamomum tamalaNees and Eberm genotypes, a newly emerging mass spectral ionization technique direct time in real time (DART) is very helpful. The DART ion source has been used to analyze an extremely wide range of phytochemicals present in leaves ofCinnamomum tamala. Ten genotypes were assessed for the presence of different phytochemicals. Phytochemical analysis showed the presence of mainly terpenes and phenols. These constituents vary in the different genotypes ofCinnamomum tamala. Principal component analysis has also been employed to analyze the DART data of theseCinnamomumgenotypes. The result shows that the genotype ofCinnamomum tamalacould be differentiated using DART MS data. The active components present inCinnamomum tamalamay be contributing significantly to high amount of antioxidant property of leaves and, in turn, conditional effects for diabetic patients.


Cancers ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 5658
Author(s):  
Donát Alpár ◽  
Bálint Egyed ◽  
Csaba Bödör ◽  
Gábor T. Kovács

Single-cell sequencing (SCS) provides high-resolution insight into the genomic, epigenomic, and transcriptomic landscape of oncohematological malignancies including pediatric leukemia, the most common type of childhood cancer. Besides broadening our biological understanding of cellular heterogeneity, sub-clonal architecture, and regulatory network of tumor cell populations, SCS can offer clinically relevant, detailed characterization of distinct compartments affected by leukemia and identify therapeutically exploitable vulnerabilities. In this review, we provide an overview of SCS studies focused on the high-resolution genomic and transcriptomic scrutiny of pediatric leukemia. Our aim is to investigate and summarize how different layers of single-cell omics approaches can expectedly support clinical decision making in the future. Although the clinical management of pediatric leukemia underwent a spectacular improvement during the past decades, resistant disease is a major cause of therapy failure. Currently, only a small proportion of childhood leukemia patients benefit from genomics-driven therapy, as 15–20% of them meet the indication criteria of on-label targeted agents, and their overall response rate falls in a relatively wide range (40–85%). The in-depth scrutiny of various cell populations influencing the development, progression, and treatment resistance of different disease subtypes can potentially uncover a wider range of driver mechanisms for innovative therapeutic interventions.


Sign in / Sign up

Export Citation Format

Share Document