scholarly journals A Machine Learning Approach to Unmask Novel Gene Signatures and Prediction of Alzheimer’s Disease Within Different Brain Regions

2021 ◽  
Author(s):  
Abhibhav Sharma ◽  
Pinki Dey

AbstractAlzheimer’s disease (AD) is a progressive neurodegenerative disorder whose aetiology is currently unknown. Although numerous studies have attempted to identify the genetic risk factor(s) of AD, the interpretability and/or the prediction accuracies achieved by these studies remained unsatisfactory, reducing their clinical significance. Here, we employ the ensemble of random-forest and regularized regression model (LASSO) to the AD-associated microarray datasets from four brain regions - Prefrontal cortex, Middle temporal gyrus, Hippocampus, and Entorhinal cortex- to discover novel genetic biomarkers through a machine learning-based feature-selection classification scheme. The proposed scheme unrevealed the most optimum and biologically significant classifiers within each brain region, which achieved by far the highest prediction accuracy of AD in 5-fold cross-validation (99% average). Interestingly, along with the novel and prominent biomarkers including CORO1C, SLC25A46, RAE1, ANKIB1, CRLF3, PDYN, numerous non-coding RNA genes were also observed as discriminator, of which AK057435 and BC037880 are uncharacterized long non-coding RNA genes.

PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e10549
Author(s):  
Qi Li ◽  
Mary Qu Yang

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder, accounting for nearly 60% of all dementia cases. The occurrence of the disease has been increasing rapidly in recent years. Presently about 46.8 million individuals suffer from AD worldwide. The current absence of effective treatment to reverse or stop AD progression highlights the importance of disease prevention and early diagnosis. Brain structural Magnetic Resonance Imaging (MRI) has been widely used for AD detection as it can display morphometric differences and cerebral structural changes. In this study, we built three machine learning-based MRI data classifiers to predict AD and infer the brain regions that contribute to disease development and progression. We then systematically compared the three distinct classifiers, which were constructed based on Support Vector Machine (SVM), 3D Very Deep Convolutional Network (VGGNet) and 3D Deep Residual Network (ResNet), respectively. To improve the performance of the deep learning classifiers, we applied a transfer learning strategy. The weights of a pre-trained model were transferred and adopted as the initial weights of our models. Transferring the learned features significantly reduced training time and increased network efficiency. The classification accuracy for AD subjects from elderly control subjects was 90%, 95%, and 95% for the SVM, VGGNet and ResNet classifiers, respectively. Gradient-weighted Class Activation Mapping (Grad-CAM) was employed to show discriminative regions that contributed most to the AD classification by utilizing the learned spatial information of the 3D-VGGNet and 3D-ResNet models. The resulted maps consistently highlighted several disease-associated brain regions, particularly the cerebellum which is a relatively neglected brain region in the present AD study. Overall, our comparisons suggested that the ResNet model provided the best classification performance as well as more accurate localization of disease-associated regions in the brain compared to the other two approaches.


2021 ◽  
Vol 12 ◽  
Author(s):  
Carmen Lage ◽  
Sara López-García ◽  
Alexandre Bejanin ◽  
Martha Kazimierczak ◽  
Ignacio Aracil-Bolaños ◽  
...  

Oculomotor behavior can provide insight into the integrity of widespread cortical networks, which may contribute to the differential diagnosis between Alzheimer's disease and frontotemporal dementia. Three groups of patients with Alzheimer's disease, behavioral variant of frontotemporal dementia (bvFTD) and semantic variant of primary progressive aphasia (svPPA) and a sample of cognitively unimpaired elders underwent an eye-tracking evaluation. All participants in the discovery sample, including controls, had a biomarker-supported diagnosis. Oculomotor correlates of neuropsychology and brain metabolism evaluated with 18F-FDG PET were explored. Machine-learning classification algorithms were trained for the differentiation between Alzheimer's disease, bvFTD and controls. A total of 93 subjects (33 Alzheimer's disease, 24 bvFTD, seven svPPA, and 29 controls) were included in the study. Alzheimer's disease was the most impaired group in all tests and displayed specific abnormalities in some visually-guided saccade parameters, as pursuit error and horizontal prosaccade latency, which are theoretically closely linked to posterior brain regions. BvFTD patients showed deficits especially in the most cognitively demanding tasks, the antisaccade and memory saccade tests, which require a fine control from frontal lobe regions. SvPPA patients performed similarly to controls in most parameters except for a lower number of correct memory saccades. Pursuit error was significantly correlated with cognitive measures of constructional praxis and executive function and metabolism in right posterior middle temporal gyrus. The classification algorithms yielded an area under the curve of 97.5% for the differentiation of Alzheimer's disease vs. controls, 96.7% for bvFTD vs. controls, and 92.5% for Alzheimer's disease vs. bvFTD. In conclusion, patients with Alzheimer's disease, bvFTD and svPPA exhibit differentiating oculomotor patterns which reflect the characteristic neuroanatomical distribution of pathology of each disease, and therefore its assessment can be useful in their diagnostic work-up. Machine learning approaches can facilitate the applicability of eye-tracking in clinical practice.


Author(s):  
A. Thushara ◽  
C. Ushadevi Amma ◽  
Ansamma John

Alzheimer’s Disease (AD) is basically a progressive neurodegenerative disorder associated with abnormal brain networks that affect millions of elderly people and degrades their quality of life. The abnormalities in brain networks are due to the disruption of White Matter (WM) fiber tracts that connect the brain regions. Diffusion-Weighted Imaging (DWI) captures the brain’s WM integrity. Here, the correlation betwixt the WM degeneration and also AD is investigated by utilizing graph theory as well as Machine Learning (ML) algorithms. By using the DW image obtained from Alzheimer’s Disease Neuroimaging Initiative (ADNI) database, the brain graph of each subject is constructed. The features extracted from the brain graph form the basis to differentiate between Mild Cognitive Impairment (MCI), Control Normal (CN) and AD subjects. Performance evaluation is done using binary and multiclass classification algorithms and obtained an accuracy that outperforms the current top-notch DWI-based studies.


2018 ◽  
Author(s):  
Stephen A. Semick ◽  
Rahul A. Bharadwaj ◽  
Leonardo Collado-Torres ◽  
Ran Tao ◽  
Joo Heon Shin ◽  
...  

AbstractBackgroundLate-onset Alzheimer’s disease (AD) is a complex age-related neurodegenerative disorder that likely involves epigenetic factors. To better understand the epigenetic state associated with AD represented as variation in DNA methylation (DNAm), we surveyed 420,852 DNAm sites from neurotypical controls (N=49) and late-onset AD patients (N=24) across four brain regions (hippocampus, entorhinal cortex, dorsolateral prefrontal cortex and cerebellum).ResultsWe identified 858 sites with robust differential methylation, collectively annotated to 772 possible genes (FDR<5%, within 10kb). These sites were overrepresented in AD genetic risk loci (p=0.00655), and nearby genes were enriched for processes related to cell-adhesion, immunity, and calcium homeostasis (FDR<5%). We analyzed corresponding RNA-seq data to prioritize 130 genes within 10kb of the differentially methylated sites, which were differentially expressed and had expression levels associated with nearby DNAm levels (p<0.05). This validated gene set includes previously reported (e.g. ANK1, DUSP22) and novel genes involved in Alzheimer’s disease, such as ANKRD30B.ConclusionsThese results highlight DNAm changes in Alzheimer’s disease that have gene expression correlates, implicating DNAm as an epigenetic mechanism underlying pathological molecular changes associated with AD. Furthermore, our framework illustrates the value of integrating epigenetic and transcriptomic data for understanding complex disease.


2020 ◽  
Vol 21 (22) ◽  
pp. 8704
Author(s):  
Karan Govindpani ◽  
Clinton Turner ◽  
Henry J. Waldvogel ◽  
Richard L. M. Faull ◽  
Andrea Kwakowsky

γ-aminobutyric acid (GABA) is the primary inhibitory neurotransmitter, playing a central role in the regulation of cortical excitability and the maintenance of the excitatory/inhibitory (E/I) balance. Several lines of evidence point to a remodeling of the cerebral GABAergic system in Alzheimer’s disease (AD), with past studies demonstrating alterations in GABA receptor and transporter expression, GABA synthesizing enzyme activity and focal GABA concentrations in post-mortem tissue. AD is a chronic neurodegenerative disorder with a poorly understood etiology and the temporal cortex is one of the earliest regions in the brain to be affected by AD neurodegeneration. Utilizing NanoString nCounter analysis, we demonstrate here the transcriptional downregulation of several GABA signaling components in the post-mortem human middle temporal gyrus (MTG) in AD, including the GABAA receptor α1, α2, α3, α5, β1, β2, β3, δ, γ2, γ3, and θ subunits and the GABAB receptor 2 (GABABR2) subunit. In addition to this, we note the transcriptional upregulation of the betaine-GABA transporter (BGT1) and GABA transporter 2 (GAT2), and the downregulation of the 67 kDa isoform of glutamate decarboxylase (GAD67), the primary GABA synthesizing enzyme. The functional consequences of these changes require further investigation, but such alterations may underlie disruptions to the E/I balance that are believed to contribute to cognitive decline in AD.


Cells ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1930
Author(s):  
Lorenzo Gaetani ◽  
Giovanni Bellomo ◽  
Lucilla Parnetti ◽  
Kaj Blennow ◽  
Henrik Zetterberg ◽  
...  

In Alzheimer’s disease (AD), the contribution of pathophysiological mechanisms other than amyloidosis and tauopathy is now widely recognized, although not clearly quantifiable by means of fluid biomarkers. We aimed to identify quantifiable protein biomarkers reflecting neuroinflammation in AD using multiplex proximity extension assay (PEA) testing. Cerebrospinal fluid (CSF) samples from patients with mild cognitive impairment due to AD (AD-MCI) and from controls, i.e., patients with other neurological diseases (OND), were analyzed with the Olink Inflammation PEA biomarker panel. A machine-learning approach was then used to identify biomarkers discriminating AD-MCI (n: 34) from OND (n: 25). On univariate analysis, SIRT2, HGF, MMP-10, and CXCL5 showed high discriminatory performance (AUC 0.809, p = 5.2 × 10−4, AUC 0.802, p = 6.4 × 10−4, AUC 0.793, p = 3.2 × 10−3, AUC 0.761, p = 2.3 × 10−3, respectively), with higher CSF levels in AD-MCI patients as compared to controls. These same proteins were the best contributors to the penalized logistic regression model discriminating AD-MCI from controls (AUC of the model 0.906, p = 2.97 × 10−7). The biological processes regulated by these proteins include astrocyte and microglia activation, amyloid, and tau misfolding modulation, and blood-brain barrier dysfunction. Using a high-throughput multiplex CSF analysis coupled with a machine-learning statistical approach, we identified novel biomarkers reflecting neuroinflammation in AD. Studies confirming these results by means of different assays are needed to validate PEA as a multiplex technique for CSF analysis and biomarker discovery in the field of neurological diseases.


2022 ◽  
Vol 14 ◽  
Author(s):  
Zhen Lan ◽  
Yanting Chen ◽  
Jiali Jin ◽  
Yun Xu ◽  
Xiaolei Zhu

Alzheimer's disease (AD), a heterogeneous neurodegenerative disorder, is the most common cause of dementia accounting for an estimated 60–80% of cases. The pathogenesis of AD remains unclear, and no curative treatment is available so far. Increasing evidence has revealed a vital role of non-coding RNAs (ncRNAs), especially long non-coding RNAs (lncRNAs), in AD. LncRNAs contribute to the pathogenesis of AD via modulating amyloid production, Tau hyperphosphorylation, mitochondrial dysfunction, oxidative stress, synaptic impairment and neuroinflammation. This review describes the biological functions and mechanisms of lncRNAs in AD, indicating that lncRNAs may provide potential therapeutic targets for the diagnosis and treatment of AD.


Sign in / Sign up

Export Citation Format

Share Document