scholarly journals A cell-ECM mechanism for connecting the ipsilateral eye to the brain

2021 ◽  
Author(s):  
Jianmin Su ◽  
Yanping Liang ◽  
Ubadah Sabbagh ◽  
Lucie Olejníková ◽  
Ashley L. Russell ◽  
...  

AbstractInformation about features in the visual world are parsed by circuits in the retina and are then transmitted to the brain by distinct subtypes of retinal ganglion cells (RGCs). Axons from RGC subtypes are stratified in retinorecipient brain nuclei, such as the superior colliculus (SC), to provide a segregated relay of parallel and feature-specific visual streams. Here, we sought to identify the molecular mechanisms that direct the stereotyped laminar targeting of these axons. We focused on ipsilateral-projecting subtypes of RGCs (ipsiRGCs) whose axons target a deep SC sublamina. We identified an extracellular glycoprotein, Nephronectin (NPNT), whose expression is restricted to this ipsiRGC-targeted sublamina. SC-derived NPNT and integrin receptors generated by ipsiRGCs are both required for the targeting of ipsiRGC axons to the deep sublamina of SC. Thus, a cell-extracellular matrix (ECM) recognition mechanism specifies precise laminar targeting of ipsiRGC axons and the assembly of eye-specific parallel visual pathways.Significance StatementDistinct features of the visual world are transmitted from the retina to the brain through anatomically segregated circuits. Despite this being an organizing principle of visual pathways in mammals, we lack an understanding of the signaling mechanisms guiding axons of different types of retinal neurons into segregated layers of brain regions. We explore this question by identifying how axons from the ipsilateral retina innervate a specific lamina of the superior colliculus. Our studies reveal a unique cell-extracellular matrix (ECM) recognition mechanism that specifies precise targeting of these axons to the superior colliculus. Loss of this mechanism not only resulted in the absence of this eye-specific visual circuit, but it led to an impairment of innate predatory visual behavior as well.

2021 ◽  
Vol 118 (42) ◽  
pp. e2104343118
Author(s):  
Jianmin Su ◽  
Ubadah Sabbagh ◽  
Yanping Liang ◽  
Lucie Olejníková ◽  
Karen G. Dixon ◽  
...  

Information about features in the visual world is parsed by circuits in the retina and is then transmitted to the brain by distinct subtypes of retinal ganglion cells (RGCs). Axons from RGC subtypes are stratified in retinorecipient brain nuclei, such as the superior colliculus (SC), to provide a segregated relay of parallel and feature-specific visual streams. Here, we sought to identify the molecular mechanisms that direct the stereotyped laminar targeting of these axons. We focused on ipsilateral-projecting subtypes of RGCs (ipsiRGCs) whose axons target a deep SC sublamina. We identified an extracellular glycoprotein, Nephronectin (NPNT), whose expression is restricted to this ipsiRGC-targeted sublamina. SC-derived NPNT and integrin receptors expressed by ipsiRGCs are both required for the targeting of ipsiRGC axons to the deep sublamina of SC. Thus, a cell–extracellular matrix (ECM) recognition mechanism specifies precise laminar targeting of ipsiRGC axons and the assembly of eye-specific parallel visual pathways.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Nicole M. Wanner ◽  
Mathia Colwell ◽  
Chelsea Drown ◽  
Christopher Faulk

Abstract Background Use of cannabidiol (CBD), the primary non-psychoactive compound found in cannabis, has recently risen dramatically, while relatively little is known about the underlying molecular mechanisms of its effects. Previous work indicates that direct CBD exposure strongly impacts the brain, with anxiolytic, antidepressant, antipsychotic, and other effects being observed in animal and human studies. The epigenome, particularly DNA methylation, is responsive to environmental input and can direct persistent patterns of gene regulation impacting phenotype. Epigenetic perturbation is particularly impactful during embryogenesis, when exogenous exposures can disrupt critical resetting of epigenetic marks and impart phenotypic effects lasting into adulthood. The impact of prenatal CBD exposure has not been evaluated; however, studies using the psychomimetic cannabinoid Δ9-tetrahydrocannabinol (THC) have identified detrimental effects on psychological outcomes in developmentally exposed adult offspring. We hypothesized that developmental CBD exposure would have similar negative effects on behavior mediated in part by the epigenome. Nulliparous female wild-type Agouti viable yellow (Avy) mice were exposed to 20 mg/kg CBD or vehicle daily from two weeks prior to mating through gestation and lactation. Coat color shifts, a readout of DNA methylation at the Agouti locus in this strain, were measured in F1 Avy/a offspring. Young adult F1 a/a offspring were then subjected to tests of working spatial memory and anxiety/compulsive behavior. Reduced-representation bisulfite sequencing was performed on both F0 and F1 cerebral cortex and F1 hippocampus to identify genome-wide changes in DNA methylation for direct and developmental exposure, respectively. Results F1 offspring exposed to CBD during development exhibited increased anxiety and improved memory behavior in a sex-specific manner. Further, while no significant coat color shift was observed in Avy/a offspring, thousands of differentially methylated loci (DMLs) were identified in both brain regions with functional enrichment for neurogenesis, substance use phenotypes, and other psychologically relevant terms. Conclusions These findings demonstrate for the first time that despite positive effects of direct exposure, developmental CBD is associated with mixed behavioral outcomes and perturbation of the brain epigenome.


2017 ◽  
Vol 1 (6) ◽  
pp. 563-572 ◽  
Author(s):  
Pierre-Mehdi Hammoudi ◽  
Dominique Soldati-Favre

Typically illustrating the ‘manipulation hypothesis’, Toxoplasma gondii is widely known to trigger sustainable behavioural changes during chronic infection of intermediate hosts to enhance transmission to its feline definitive hosts, ensuring survival and dissemination. During the chronic stage of infection in rodents, a variety of neurological dysfunctions have been unravelled and correlated with the loss of cat fear, among other phenotypic impacts. However, the underlying neurological alteration(s) driving these behavioural modifications is only partially understood, which makes it difficult to draw more than a correlation between T. gondii infection and changes in brain homeostasis. Moreover, it is barely known which among the brain regions governing fear and stress responses are preferentially affected during T. gondii infection. Studies aiming at an in-depth dissection of underlying molecular mechanisms occurring at the host and parasite levels will be discussed in this review. Addressing this reminiscent topic in the light of recent technical progress and new discoveries regarding fear response, olfaction and neuromodulator mechanisms could contribute to a better understanding of this complex host–parasite interaction.


2021 ◽  
Author(s):  
Rahat Hasan ◽  
Jack Humphrey ◽  
Conceicao Bettencourt ◽  
Tammaryn Lashley ◽  
Pietro Fratta ◽  
...  

Frontotemporal lobar degeneration (FTLD) is a group of heterogeneous neurodegenerative disorders affecting the frontal and temporal lobes of the brain. Nuclear loss and cytoplasmic aggregation of the RNA-binding protein TDP-43 represents the major FTLD pathology, known as FTLD-TDP. To date, there is no effective treatment for FTLD-TDP due to an incomplete understanding of the molecular mechanisms underlying disease development. Here we compared post-mortem tissue RNA-seq transcriptomes from the frontal cortex, temporal cortex and cerebellum between 28 controls and 30 FTLD-TDP patients to profile changes in cell-type composition, gene expression and transcript usage. We observed downregulation of neuronal markers in all three regions of the brain, accompanied by upregulation of microglia, astrocytes, and oligodendrocytes, as well as endothelial cells and pericytes, suggesting shifts in both immune activation and within the vasculature. We validate our estimates of neuronal loss using neuropathological atrophy scores and show that neuronal loss in the cortex can be mainly attributed to excitatory neurons, and that increases in microglial and endothelial cell expression are highly correlated with neuronal loss. All our analyses identified a strong involvement of the cerebellum in the neurodegenerative process of FTLD-TDP. Altogether, our data provides a detailed landscape of gene expression alterations to help unravel relevant disease mechanisms in FTLD.


2017 ◽  
Vol 34 ◽  
Author(s):  
NA ZHOU ◽  
PHILLIP S. MAIRE ◽  
SEAN P. MASTERSON ◽  
MARTHA E. BICKFORD

AbstractComparative studies have greatly contributed to our understanding of the organization and function of visual pathways of the brain, including that of humans. This comparative approach is a particularly useful tactic for studying the pulvinar nucleus, an enigmatic structure which comprises the largest territory of the human thalamus. This review focuses on the regions of the mouse pulvinar that receive input from the superior colliculus, and highlights similarities of the tectorecipient pulvinar identified across species. Open questions are discussed, as well as the potential contributions of the mouse model for endeavors to elucidate the function of the pulvinar nucleus.


2020 ◽  
Author(s):  
Xue Luo ◽  
Danrui Cai ◽  
Kejiong Shen ◽  
Qinqin Deng ◽  
Xinlan Lei ◽  
...  

AbstractThe looming stimulus-evoked flight response is an experimental paradigm for studying innate defensive behaviors. However, how the visual looming stimulus is transmitted from the retina to the brain remains poorly understood. Here, we report that superior colliculus (SC)-projecting RGCs transmit the looming signal from the retina to the brain to mediate the looming-evoked flight behavior by releasing GABA. In the mouse retina, GABAergic RGCs are capable of projecting to many brain areas, including the SC. Superior colliculus (SC)-projecting GABAergic RGCs (spgRGCs) are mono-synaptically connected to the parvalbumin-positive SC neurons known to be required for the looming-evoked flight response. Optogenetic activation of spgRGCs triggers GABA-mediated inhibition in SC neurons. The ablation or silence of spgRGCs compromises looming-evoked flight response but not image-forming functions. Therefore, this study shows that spgRGCs control the looming-evoked flight response by regulating SC neurons via GABA, providing novel insight into the regulation of innate defensive behaviors.


2018 ◽  
Author(s):  
Katja Reinhard ◽  
Chen Li ◽  
Quan Do ◽  
Emily Burke ◽  
Steven Heynderickx ◽  
...  

AbstractUsing sensory information to trigger different behaviours relies on circuits that pass-through brain regions. However, the rules by which parallel inputs are routed to different downstream targets is poorly understood. The superior colliculus mediates a set of innate behaviours, receiving input from ~30 retinal ganglion cell types and projecting to behaviourally important targets including the pulvinar and parabigeminal nucleus. Combining transsynaptic circuit tracing with in-vivo and ex-vivo electrophysiological recordings we observed a projection specific logic where each collicular output pathway sampled a distinct set of retinal inputs. Neurons projecting to the pulvinar or parabigeminal nucleus uniquely sampled 4 and 7 cell types, respectively. Four others innervated both pathways. The visual response properties of retinal ganglion cells correlated well with those of their disynaptic targets. These findings suggest that projection specific sampling of retinal inputs forms a mechanistic basis for the selective triggering of visually guided behaviours by the superior colliculus.


2020 ◽  
Author(s):  
Li Niu ◽  
Shiming Yang ◽  
Weixi Wang ◽  
Cui-fang Ye ◽  
He Li

Abstract Background Synaptic dysfunction caused by mutant huntingtin greatly contributes to Huntington’s disease (HD) pathogenesis. HD patients show cognitive impairment as well as uncontrolled movements. Vesicular zinc is closely linked to modulating synaptic transmission and maintaining cognitive ability. However, whether does mutant huntingtin affect zinc homeostasis in the brain or not? This will be of great significance for further revealing the pathogenesis of HD. Methods N171-HD82Q transgenic mice and cultured BHK cells expressing N-terminal mutant huntingtin fragment containing 160 glutamines (160Q BHK cells) were used to investigate the effect of mutant huntingtin on zinc homeostasis and its molecular mechanisms. Results Herein, we have demonstrated that the density of synaptic vesicular zinc decreases in the cortex, striatum and hippocampus of N171-82Q mice. Given that vesicular zinc concentration depends on the abundance of zinc transporter 3 (ZnT3) on the membrane of synaptic vesicles, ZnT3 expression is detected in the brain of N171-82Q mice and 160Q BHK cells. Mutant huntingtin leads to a dramatical decrease in ZnT3 mRNA and protein levels in the three brain regions of these mice aged from 14 to 20 weeks. Significantly, Sp1 activates ZnT3 transcription via its binding to the GC boxes in ZnT3 promoter. Nevertheless, mutant huntingtin inhibits the binding of Sp1 to the promoter of ZnT3 gene and down-regulates ZnT3 expression. Furthermore, the overexpression of Sp1 ameliorates inhibition of ZnT3 gene transcription by mutant huntingtin. Conclusions Collectively, this first study to reveal a significant loss of synaptic vesicular zinc and ZnT3 expression caused by mutant huntingtin in the early stage of HD. Our findings have revealed the molecular mechanism underlying this change. Mutant huntingtin inhibits the binding of Sp1 to ZnT3 gene promoter to reduce ZnT3 expression. The imbalance of vesicular zinc homeostasis may be closely associated with synaptic dysfunction and cognitive deficits in HD. This work sheds novel mechanistic insights into the pathogenesis of HD and promises a potential therapeutic strategy for HD.


2019 ◽  
Author(s):  
Dominic Kaul ◽  
Sibylle Schwab ◽  
Naguib Mechawar ◽  
Natalie Matosin

Exposure to stressful or traumatic experiences is one of the most robust risk factors for severe psychiatric disorders and has been shown to reshape entire brain regions, especially those involved in processing the stress response. This is likely underpinned by alterations to brain cell shapes, numbers and their connections, thus changing brain circuitry to enable coping with the current and future stress. In this review, we present a model for how stress re-shapes the brain, consolidating evidence of morphometric changes and the cellular and molecular mechanisms that underlie them. We illustrate how the temporal effects of stress can cause persistent remodelling of brain cells, highlighting that an individual's stress history is important for understanding psychiatric disorder risk and development. Understanding how stress re-shapes the brain is a critical step for understanding stress as a risk factor for brain pathology, and to develop appropriate biomarkers, treatments and intervention strategies.


Sign in / Sign up

Export Citation Format

Share Document