scholarly journals Annual dynamics of Zymoseptoria tritici populations in wheat cultivar mixtures: a compromise between the efficiency and durability of a recently broken-down resistance gene?

2021 ◽  
Author(s):  
Carolina Orellana-Torrejon ◽  
Tiphaine Vidal ◽  
Anne-Lise Boixel ◽  
Sandrine Gélisse ◽  
Sébastien Saint-Jean ◽  
...  

AbstractCultivar mixtures slow polycyclic epidemics but may also modify the evolution of pathogen populations by diversifying the selection pressures exerted by their plant hosts at field scale. We compared the dynamics of natural populations of the fungal pathogen Zymoseptoria tritici in pure stands and in three binary mixtures of wheat cultivars (one susceptible cultivar and one cultivar carrying the recently broken-down Stb16q gene) over two annual field epidemics. We combined analyses of population ‘size’ based on disease severity, and of population ‘composition’ based on assessments of changes in the frequency of virulence against Stb16q in seedling assays with more than 3000 strains. In the field, disease levels were lower in mixtures, with each cultivar providing the other with reciprocal protection. The three cultivar proportions in the mixtures (0.25, 0.5 and 0.75) modulated the decrease in (i) the size of the pathogen population relative to the two pure stands, (ii) the size of the virulent subpopulation, and (iii) the frequency of virulence relative to the pure stand of the cultivar carrying Stb16q. Our findings suggest that optimal proportions may differ slightly between the three indicators considered. We identified potential trade-offs that should be taken into account when deploying a resistance gene in cultivar mixtures: between the dual objectives ‘efficacy’ and ‘durability’, and between the ‘size’ and ‘frequency’ of the virulent subpopulation. Based on current knowledge, it remains unclear whether virulent subpopulation size or frequency has the largest influence on interepidemic virulence transmission.

2019 ◽  
Author(s):  
Anne-Lise Boixel ◽  
Michaël Chelle ◽  
Frédéric Suffert

SummaryPlant pathogen populations inhabit patchy environments with contrasting, variable thermal conditions. We investigated the diversity of thermal responses in populations sampled over contrasting spatiotemporal scales, to improve our understanding of their dynamics of adaptation to local conditions.Samples of natural populations of the wheat pathogen Zymoseptoria tritici were collected from sites within the Euro-Mediterranean region subject to a broad range of environmental conditions. We tested for local adaptation, by accounting for the diversity of responses at the individual and population levels on the basis of key thermal performance curve parameters and ‘thermotype’ (groups of individuals with similar thermal responses) composition.The characterisation of phenotypic responses and genotypic structure revealed: (i) a high degree of individual plasticity and variation in sensitivity to temperature conditions across spatiotemporal scales and populations; (ii) geographic adaptation to local mean temperature conditions, with major alterations due to seasonal patterns over the wheat-growing season.The seasonal shifts in functional composition suggest that populations are locally structured by selection, contributing to shape adaptation patterns. Further studies combining selection experiments and modelling are required to determine how functional group selection drives population dynamics and adaptive potential in response to thermal heterogeneity.


eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Anna-Liisa Laine ◽  
Benoit Barrès ◽  
Elina Numminen ◽  
Jukka P Siren

Many pathogens possess the capacity for sex through outcrossing, despite being able to reproduce also asexually and/or via selfing. Given that sex is assumed to come at a cost, these mixed reproductive strategies typical of pathogens have remained puzzling. While the ecological and evolutionary benefits of outcrossing are theoretically well-supported, support for such benefits in pathogen populations are still scarce. Here, we analyze the epidemiology and genetic structure of natural populations of an obligate fungal pathogen, Podosphaera plantaginis. We find that the opportunities for outcrossing vary spatially. Populations supporting high levels of coinfection –a prerequisite of sex – result in hotspots of novel genetic diversity. Pathogen populations supporting coinfection also have a higher probability of surviving winter. Jointly our results show that outcrossing has direct epidemiological consequences as well as a major impact on pathogen population genetic diversity, thereby providing evidence of ecological and evolutionary benefits of outcrossing in pathogens.


2021 ◽  
Author(s):  
Carolina Orellana‐Torrejon ◽  
Tiphaine Vidal ◽  
Anne‐Lise Boixel ◽  
Sandrine Gélisse ◽  
Sébastien Saint‐Jean ◽  
...  

2017 ◽  
Vol 60 (2) ◽  
Author(s):  
Xiaojie Liu ◽  
Kenny Bogaert ◽  
Aschwin H. Engelen ◽  
Frederik Leliaert ◽  
Michael Y. Roleda ◽  
...  

AbstractKnowledge of life cycle progression and reproduction of seaweeds transcends pure academic interest. Successful and sustainable seaweed exploitation and domestication will indeed require excellent control of the factors controlling growth and reproduction. The relative dominance of the ploidy-phases and their respective morphologies, however, display tremendous diversity. Consequently, the ecological and endogenous factors controlling life cycles are likely to be equally varied. A vast number of research papers addressing theoretical, ecological and physiological aspects of reproduction have been published over the years. Here, we review the current knowledge on reproductive strategies, trade-offs of reproductive effort in natural populations, and the environmental and endogenous factors controlling reproduction. Given that the majority of ecophysiological studies predate the “-omics” era, we examine the extent to which this knowledge of reproduction has been, or can be, applied to further our knowledge of life cycle control in seaweeds.


Author(s):  
Anik Dutta ◽  
Daniel Croll ◽  
Bruce A. McDonald ◽  
Luke G. Barrett

AbstractGenetic diversity within pathogen populations is critically important for predicting pathogen evolution, disease outcomes and prevalence. However, we lack a good understanding of the processes maintaining genetic variation and constraints on pathogen life-history evolution. Here, we analyzed interactions between 12 wheat host genotypes and 145 strains of Zymoseptoria tritici from five global populations to investigate the evolution and maintenance of variation in pathogen virulence and reproduction. We found a strong positive correlation between virulence and reproduction, with substantial variation in both traits maintained within each pathogen population. On average, highly virulent isolates exhibited higher fecundity, which might increase transmission potential in agricultural fields planted to homogeneous hosts at a high density. We further showed that pathogen strains with a narrow host range (i.e. specialists) for fecundity were on average less virulent, and those with a broader host range (i.e. generalists) for virulence were on average less fecund on a given specific host. These trade-offs costs associated with host specialization might constrain the directional evolution of virulence and fecundity. We conclude that selection favoring pathogen strains that are virulent across diverse hosts, coupled with selection that maximizes fecundity on specific hosts, may explain the maintenance of these pathogenicity traits within and among pathogen populations.


2021 ◽  
pp. 1-6
Author(s):  
Jessica S. Ambriz ◽  
Clementina González ◽  
Eduardo Cuevas

Abstract Fuchsia parviflora is a dioecious shrub that depends on biotic pollination for reproduction. Previous studies suggest that the male plants produce more flowers, and male-biased sex ratios have been found in some natural populations. To assess whether the biased sex ratios found between genders in natural populations are present at the point at which plants reach sexual maturity, and to identify possible trade-offs between growth and reproduction, we performed a common garden experiment. Finally, to complement the information of the common garden experiment, we estimated the reproductive biomass allocation between genders in one natural population. Sex ratios at reaching sexual maturity in F. parviflora did not differ from 0.5, except in one population, which was the smallest seedling population. We found no differences between genders in terms of the probability of germination or flowering. When flowering began, female plants were taller than males and the tallest plants of both genders required more time to reach sexual maturity. Males produced significantly more flowers than females, and the number of flowers increased with plant height in both genders. Finally, in the natural population studied, the investment in reproductive biomass was seven-fold greater in female plants than in male plants. Our results showed no evidence of possible trade-offs between growth and reproduction. Despite the fact that female plants invest more in reproductive biomass, they were taller than the males after flowering, possibly at the expense of herbivory defence.


1997 ◽  
Vol 75 (4) ◽  
pp. 542-548 ◽  
Author(s):  
P. H. Niewiarowski ◽  
J. D. Congdon ◽  
A. E. Dunham ◽  
L. J. Vitt ◽  
D. W. Tinkle

Potential costs and benefits of tail autotomy in lizards have been inferred almost exclusively from experimental study in semi-natural enclosures and from indirect comparative evidence from natural populations. We present complementary evidence of the costs of tail autotomy to the lizard Uta stansburiana from detailed demographic study of a natural population. On initial capture, we broke the tails of a large sample of free-ranging hatchlings (560) and left the tails of another large sample (455) intact, and then followed subsequent hatchling growth and survival over a 3-year period. Surprisingly, in 1 out of the 3 years of study, survival of female hatchlings with broken tails exceeded that of female hatchlings with intact tails. Furthermore, no effects of tail loss on survivorship were detected for male hatchlings. However, in 2 years when recaptures were very frequent (1961, 1962), growth rates of hatchlings with broken tails were significantly slower than those of their counterparts with intact tails. We discuss our results in the broader context of estimating the relative costs and benefits of tail autotomy in natural populations, and suggest that long-term demographic studies will provide the best opportunity to assess realized fitness costs and benefits with minimum bias. We also describe how experimentally induced tail autotomy can be used as a technique to complement experimental manipulation of reproductive investment in the study of life-history trade-offs.


PLoS ONE ◽  
2022 ◽  
Vol 17 (1) ◽  
pp. e0262370
Author(s):  
Jordan C. Raisman ◽  
Michael A. Fiore ◽  
Lucille Tomin ◽  
Joseph K. O. Adjei ◽  
Virginia X. Aswad ◽  
...  

Neisseria commensals are an indisputable source of resistance for their pathogenic relatives. However, the evolutionary paths commensal species take to reduced susceptibility in this genus have been relatively underexplored. Here, we leverage in vitro selection as a powerful screen to identify the genetic adaptations that produce azithromycin resistance (≥ 2 μg/mL) in the Neisseria commensal, N. elongata. Across multiple lineages (n = 7/16), we find mutations that reduce susceptibility to azithromycin converge on the locus encoding the 50S ribosomal L34 protein (rpmH) and the intergenic region proximal to the 30S ribosomal S3 protein (rpsC) through short tandem duplication events. Interestingly, one of the laboratory evolved mutations in rpmH is identical (7LKRTYQ12), and two nearly identical, to those recently reported to contribute to high-level azithromycin resistance in N. gonorrhoeae. Transformations into the ancestral N. elongata lineage confirmed the causality of both rpmH and rpsC mutations. Though most lineages inheriting duplications suffered in vitro fitness costs, one variant showed no growth defect, suggesting the possibility that it may be sustained in natural populations. Ultimately, studies like this will be critical for predicting commensal alleles that could rapidly disseminate into pathogen populations via allelic exchange across recombinogenic microbial genera.


2019 ◽  
Author(s):  
Lydie Kerdraon ◽  
Matthieu Barret ◽  
Valérie Laval ◽  
Frédéric Suffert

AbstractBackgroundWheat residues are a crucial determinant of the epidemiology of Septoria tritici blotch, as they support the sexual reproduction of the causal agent Zymoseptoria tritici. We aimed to characterize the effect of infection with this fungal pathogen on the microbial communities present on wheat residues, and to identify microorganisms interacting with it. We used metabarcoding to characterize the microbiome associated with wheat residues placed outdoors, with and without preliminary Z. tritici inoculation, comparing a first set of residues in contact with the soil and a second set without contact with the soil, on four sampling dates in two consecutive years.ResultsThe diversity of the tested conditions, leading to the establishment of different microbial communities according to the origins of the constitutive taxa (plant only, or plant and soil), highlighted the effect of Z. tritici on the wheat residue microbiome. Several microorganisms were affected by Z. tritici infection, even after the disappearance of the pathogen. Linear discriminant analyses and ecological network analyses were combined to describe the communities affected by infection. The number of fungi and bacteria promoted or inhibited by inoculation with Z. tritici decreased over time, and was smaller for residues in contact with the soil. The interactions between the pathogen and other microorganisms appeared to be mostly indirect, despite the strong position of the pathogen as a keystone taxon in networks. Direct interactions with other members of the communities mostly involved fungi, including other wheat pathogens. Our results provide essential information about the alterations to the microbial community in wheat residues induced by the mere presence of a fungal pathogen, and vice versa. Species already described as beneficial or biocontrol agents were found to be affected by pathogen inoculation.ConclusionsThe strategy developed here can be viewed as a proof-of-concept focusing on crop residues as a particularly rich ecological compartment, with a high diversity of fungal and bacterial taxa originating from both the plant and soil compartments, and for Z. tritici-wheat as a model pathosystem. By revealing putative antagonistic interactions, this study paves the way for improving the biological control of residue-borne diseases.


2021 ◽  
Vol 118 (10) ◽  
pp. e2016900118
Author(s):  
Ian R. MacLachlan ◽  
Tegan K. McDonald ◽  
Brandon M. Lind ◽  
Loren H. Rieseberg ◽  
Sam Yeaman ◽  
...  

Locally adapted temperate tree populations exhibit genetic trade-offs among climate-related traits that can be exacerbated by selective breeding and are challenging to manage under climate change. To inform climatically adaptive forest management, we investigated the genetic architecture and impacts of selective breeding on four climate-related traits in 105 natural and 20 selectively bred lodgepole pine populations from western Canada. Growth, cold injury, growth initiation, and growth cessation phenotypes were tested for associations with 18,600 single-nucleotide polymorphisms (SNPs) in natural populations to identify “positive effect alleles” (PEAs). The effects of artificial selection for faster growth on the frequency of PEAs associated with each trait were quantified in breeding populations from different climates. Substantial shifts in PEA proportions and frequencies were observed across many loci after two generations of selective breeding for height, and responses of phenology-associated PEAs differed strongly among climatic regions. Extensive genetic overlap was evident among traits. Alleles most strongly associated with greater height were often associated with greater cold injury and delayed phenology, although it is unclear whether potential trade-offs arose directly from pleiotropy or indirectly via genetic linkage. Modest variation in multilocus PEA frequencies among populations was associated with large phenotypic differences and strong climatic gradients, providing support for assisted gene flow polices. Relationships among genotypes, phenotypes, and climate in natural populations were maintained or strengthened by selective breeding. However, future adaptive phenotypes and assisted gene flow may be compromised if selective breeding further increases the PEA frequencies of SNPs involved in adaptive trade-offs among climate-related traits.


Sign in / Sign up

Export Citation Format

Share Document