scholarly journals Treatment with sodium butyrate has therapeutic benefits for Machado-Joseph disease through the induction of autophagy

2021 ◽  
Author(s):  
Maxinne Watchon ◽  
Katherine J. Robinson ◽  
Luan Luu ◽  
Kristy C. Yuan ◽  
Albert Lee ◽  
...  

AbstractMachado-Joseph disease (MJD) is a fatal neurodegenerative disease caused by expansion of the trinucleotide repeat region within the ATXN3/MJD gene. Mutation of ATXN3 causes formation of neurotoxic ataxin-3 protein aggregates, neurodegeneration and motor deficits. Here we investigated the therapeutic potential of sodium butyrate (SB), the sodium salt of butyric acid, a metabolite naturally produced by gut microbiota, on cultured SH-SY5Y cells and transgenic zebrafish expressing human ataxin-3 containing 84 glutamine (Q) residues to model MJD. MJD SH-SY5Y cells were found to contain ataxin-3 oligomeric species and protein aggregates. Interestingly, treatment with SB decreased the size of detergentinsoluble ataxin-3 aggregates in vitro. Further investigation revealed that SB treatment increased activity of the autophagy protein quality control pathway in the MJD cells and decreased presence of ataxin-3 oligomers in an autophagy-dependent manner. Treatment with SB was also beneficial in vivo through induction of autophagy and improving swimming performance in transgenic MJD zebrafish. Co-treating the MJD zebrafish with SB and chloroquine, an autophagy inhibitor, prevented the beneficial effects of SB, suggesting that the improved swimming performance was autophagy-dependent. Furthermore, intraperitoneal injection of SB to wild type mice resulted in increased levels of neuronal LC3B levels, indicating induction of autophagy within the brain. Collectively, our findings suggest that SB can induce activity of the autophagy pathway and can produce beneficial effects in vitro and in vivo. We propose that treatment with sodium butyrate warrants further investigation for the treatment of neurodegenerative diseases underpinned by proteinopathy mechanisms, including MJD.

2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Dezhong Wang ◽  
Yuan Yin ◽  
Shuyi Wang ◽  
Tianyang Zhao ◽  
Fanghua Gong ◽  
...  

AbstractAs a classically known mitogen, fibroblast growth factor 1 (FGF1) has been found to exert other pleiotropic functions such as metabolic regulation and myocardial protection. Here, we show that serum levels of FGF1 were decreased and positively correlated with fraction shortening in diabetic cardiomyopathy (DCM) patients, indicating that FGF1 is a potential therapeutic target for DCM. We found that treatment with a FGF1 variant (FGF1∆HBS) with reduced proliferative potency prevented diabetes-induced cardiac injury and remodeling and restored cardiac function. RNA-Seq results obtained from the cardiac tissues of db/db mice showed significant increase in the expression levels of anti-oxidative genes and decrease of Nur77 by FGF1∆HBS treatment. Both in vivo and in vitro studies indicate that FGF1∆HBS exerted these beneficial effects by markedly reducing mitochondrial fragmentation, reactive oxygen species (ROS) generation and cytochrome c leakage and enhancing mitochondrial respiration rate and β-oxidation in a 5’ AMP-activated protein kinase (AMPK)/Nur77-dependent manner, all of which were not observed in the AMPK null mice. The favorable metabolic activity and reduced proliferative properties of FGF1∆HBS testify to its promising potential for use in the treatment of DCM and other metabolic disorders.


Author(s):  
Pollyana Ribeiro Castro ◽  
Lucas Felipe Fernandes Bittencourt ◽  
Sébastien Larochelle ◽  
Silvia Passos Andrade ◽  
Charles Reay Mackay ◽  
...  

Butyrate is a short-chain fatty acid (SCFA) derived from microbiota and is involved in a range of cell processes in a concentration-dependent manner. Low concentrations of sodium butyrate (NaBu) was shown to be proangiogenic. However, the mechanisms associated with these effects are not yet fully known. Here, we investigated the contribution of the SCFA receptor GPR43 in the proangiogenic effects of local treatment with NaBu and its effects on matrix remodeling using the sponge-induced fibrovascular tissue model in mice lacking the GPR43 gene (GPR43-KO) and the wild-type (WT). We demonstrated that NaBu (0.2 mM intraimplant) treatment enhanced the neovascularization process, blood flow, and VEGF levels in a GPR43-dependent manner in the implants. Moreover, NaBu was able to modulate matrix remodeling aspects of the granulation tissue such as proteoglycans production, collagen deposition and α-SMA expression in vivo, besides to increase TGF-b1 levels in the fibrovascular tissue, in a GPR43-dependent manner. Interestingly, NaBu directly stimulated L929 murine fibroblasts migration, and TGF-β1 and collagen production in vitro. GPR43 was found to be expressed in human dermal fibroblasts, myofibroblasts and endothelial cells. Overall, our findings evidence that the metabolite-sensing receptor GPR43 contributes to the effects of low dose of NaBu in inducing angiogenesis and matrix remodeling during granulation tissue formation. These data provide important insights for the proposition of new therapeutic approaches based on NaBu, beyond the highly explored intestinal, anti-inflammatory, and anti-cancer purposes, as a local treatment to improve tissue repair, particularly, by modulating granulation tissue components.


Antioxidants ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1113
Author(s):  
Pamela Maher

Alterations occur in the homeostasis of the transition metals iron (Fe2+) and copper (Cu2+) during aging and these are further amplified in neurodegenerative diseases, including Alzheimer’s disease (AD). These observations suggest that the most effective drug candidates for AD might be those that can reduce these alterations. The flavonoid fisetin has both neuroprotective and anti-inflammatory activity both in vitro and in vivo and can bind both iron and copper suggesting that its chelating activity might play a role in its beneficial effects. To test this idea, the effects of iron and copper on both the neuroprotective and anti-inflammatory activities of fisetin were examined. It is shown that while fisetin can reduce the potentiation of cell death by iron and copper in response to treatments that lower glutathione levels, it is much less effective when the metals are combined with other inducers of oxidative stress. In addition, iron but not copper reduces the anti-inflammatory effects of fisetin in a dose-dependent manner. These effects correlate with the ability of iron but not copper to block the induction of the antioxidant transcription factor, Nrf2, by fisetin. In contrast, although the flavanone sterubin also binds iron, the metal has no effect on sterubin’s ability to induce Nrf2 or protect cells from toxic or pro-inflammatory insults. Together, these results suggest that while iron and copper binding could contribute to the beneficial effects of neuroprotective compounds in the context of neurodegenerative diseases, the consequences of this binding need to be fully examined for each compound.


2012 ◽  
Vol 108 (10) ◽  
pp. 1839-1846 ◽  
Author(s):  
Evelyn Jantscher-Krenn ◽  
Tineke Lauwaet ◽  
Laura A. Bliss ◽  
Sharon L. Reed ◽  
Frances D. Gillin ◽  
...  

Human milk oligosaccharides (HMO), complex sugars that are highly abundant in breast milk, block viral and bacterial attachment to the infant's intestinal epithelium and lower the risk of infections. We hypothesised that HMO also prevent infections with the protozoan parasiteEntamoeba histolytica,as its major virulence factor is a lectin that facilitates parasite attachment and cytotoxicity and binds galactose (Gal) andN-acetyl-galactosamine. HMO contain Gal, are only minimally digested in the small intestine and reach the colon, the site ofE. histolyticainfection. The objective of the present study was to investigate whether HMO reduceE. histolyticaattachment and cytotoxicity. Ourin vitroresults show that physiological concentrations of isolated, pooled HMO detachE. histolyticaby more than 80 %. In addition, HMO rescueE. histolytica-induced destruction of human intestinal epithelial HT-29 cells in a dose-dependent manner. The cytoprotective effects were structure-specific. Lacto-N-tetraose with its terminal Gal rescued up to 80 % of the HT-29 cells, while HMO with fucose α1–2-linked to the terminal Gal had no effect. Galacto-oligosaccharides (GOS), which also contain terminal Gal and are currently added to infant formula to mimic some of the beneficial effects of HMO, completely abolishedE. histolyticaattachment and cytotoxicity at 8 mg/ml. Although our results need to be confirmedin vivo, they may provide one explanation for why breast-fed infants are at lower risk ofE. histolyticainfections. HMO and GOS are heat tolerant, stable, safe and in the case of GOS, inexpensive, which could make them valuable candidates as alternative preventive and therapeutic anti-amoebic agents.


2017 ◽  
Vol 114 (32) ◽  
pp. E6595-E6602 ◽  
Author(s):  
Xinglu Huang ◽  
Jane Chisholm ◽  
Jie Zhuang ◽  
Yanyu Xiao ◽  
Gregg Duncan ◽  
...  

Reports on drug delivery systems capable of overcoming multiple biological barriers are rare. We introduce a nanoparticle-based drug delivery technology capable of rapidly penetrating both lung tumor tissue and the mucus layer that protects airway tissues from nanoscale objects. Specifically, human ferritin heavy-chain nanocages (FTn) were functionalized with polyethylene glycol (PEG) in a unique manner that allows robust control over PEG location (nanoparticle surface only) and surface density. We varied PEG surface density and molecular weight to discover PEGylated FTn that rapidly penetrated both mucus barriers and tumor tissues in vitro and in vivo. Upon inhalation in mice, PEGylated FTn with optimized PEGylation rapidly penetrated the mucus gel layer and thus provided a uniform distribution throughout the airways. Subsequently, PEGylated FTn preferentially penetrated and distributed within orthotopic lung tumor tissue, and selectively entered cancer cells, in a transferrin receptor 1-dependent manner, which is up-regulated in most cancers. To test the potential therapeutic benefits, doxorubicin (DOX) was conjugated to PEGylated FTn via an acid-labile linker to facilitate intracellular release of DOX after cell entry. Inhalation of DOX-loaded PEGylated FTn led to 60% survival, compared with 10% survival in the group that inhaled DOX in solution at the maximally tolerated dose, in a murine model of malignant airway lung cancer. This approach may provide benefits as an adjuvant therapy combined with systemic chemo- or immunotherapy or as a stand-alone therapy for patients with tumors confined to the airways.


2018 ◽  
Author(s):  
Jung Ok Lee ◽  
Hye Jeong Lee ◽  
Yong Woo Lee ◽  
Jeong Ah Han ◽  
Min Ju Kang ◽  
...  

AbstractMeteorin-like (metrnl) is a recently identified adipomyokine that has beneficial effects on glucose metabolism. However, its underlying mechanism of action is not completely understood. In this study, we have shown that a level of metrnl increase in vitro under electrical-pulse-stimulation (EPS) and in vivo in exercise mice, suggesting that metrnl is an exercise-induced myokine. In addition, metrnl increases glucose uptake through the calcium-dependent AMPK pathway. Metrnl also increases the phosphorylation of HDAC5, a transcriptional repressor of GLUT4, in an AMPK-dependent manner. Phosphorylated HDAC5 interacts with 14-3-3 proteins and sequesters them in the cytoplasm, resulting in the activation of GLUT4 transcription. The intraperitoneal injection of recombinant metrnl improves glucose tolerance in mice with high fat-induced obesity or type 2 diabetes (db/db), but this is not seen in AMPK β1β2 muscle-specific null mice (AMPK β1β2 MKO). In conclusion, we have demonstrated that metrnl induces beneficial effects on glucose metabolism via AMPK and is a promising therapeutic candidate for glucose-related diseases such as type 2 diabetes.


Molecules ◽  
2021 ◽  
Vol 26 (20) ◽  
pp. 6298
Author(s):  
Rami Lee ◽  
Sun-Hye Choi ◽  
Han-Sung Cho ◽  
Hongik Hwang ◽  
Hyewhon Rhim ◽  
...  

Ginseng-derived gintonin reportedly contains functional lysophosphatidic acids (LPAs) as LPA receptor ligands. The effect of the gintonin-enriched fraction (GEF) on in vitro and in vivo glucagon-like protein-1 (GLP-1) secretion, which is known to stimulate insulin secretion, via LPA receptor(s) remains unclear. Accordingly, we examined the effects of GEF on GLP-1 secretion using human enteroendocrine NCI-H716 cells. The expression of several of LPA receptor subtypes in NCI-H716 cells using qPCR and Western blotting was examined. LPA receptor subtype expression was in the following order: LPA6 > LPA2 > LPA4 > LPA5 > LPA1 (qPCR), and LPA6 > LPA4 > LPA2 > LPA1 > LPA3 > LPA5 (Western blotting). GEF-stimulated GLP-1 secretion occurred in a dose- and time-dependent manner, which was suppressed by cAMP-Rp, a cAMP antagonist, but not by U73122, a phospholipase C inhibitor. Furthermore, silencing the human LPA6 receptor attenuated GEF-mediated GLP-1 secretion. In mice, low-dose GEF (50 mg/kg, peroral) increased serum GLP-1 levels; this effect was not blocked by Ki16425 co-treatment. Our findings indicate that GEF-induced GLP-1 secretion could be achieved via LPA6 receptor activation through the cAMP pathway. Hence, GEF-induced GLP secretion via LPA6 receptor regulation might be responsible for its beneficial effects on human endocrine physiology.


Archaea ◽  
2002 ◽  
Vol 1 (2) ◽  
pp. 87-93 ◽  
Author(s):  
Annamaria Guagliardi ◽  
Laura Cerchia ◽  
Mosè Rossi

The physiological role of the nonspecific DNA-binding protein Sso7d from the crenarchaeonSulfolobus solfataricusis unknown. In vitro studies have shown that Sso7d promotes annealing of complementary DNA strands (Guagliardi et al. 1997), induces negative supercoiling (Lopez-Garcia et al. 1998), and chaperones the disassembly and renaturation of protein aggregates in an ATP hydrolysis-dependent manner (Guagliardi et al. 2000). In this study, we examined the relationships among the binding of Sso7d to double-stranded DNA, its interaction with protein aggregates, and its ATPase activity. Experiments with 1-anilinonaphthalene-8-sulfonic acid as probe demonstrated that exposed hydrophobic surfaces in Sso7d are responsible for interactions with protein aggregates and double-stranded DNA, whereas the site of ATPase activity has a non-hydrophobic character. The interactions of Sso7d with double-stranded DNA and with protein aggregates are mutually exclusive events, suggesting that the disassembly activity and the DNA-related activities of Sso7d may be competitive in vivo. In contrast, the hydrolysis of ATP by Sso7d is independent of the binding of Sso7d to double-stranded DNA or protein aggregates.


2021 ◽  
Vol 12 ◽  
Author(s):  
Paulo José Basso ◽  
Helioswilton Sales-Campos ◽  
Viviani Nardini ◽  
Murillo Duarte-Silva ◽  
Vanessa Beatriz Freitas Alves ◽  
...  

The current therapeutic options for Inflammatory Bowel Diseases (IBD) are limited. Even using common anti-inflammatory, immunosuppressive or biological therapies, many patients become unresponsive to the treatments, immunosuppressed or unable to restrain secondary infections. Statins are cholesterol-lowering drugs with non-canonical anti-inflammatory properties, whose underlying mechanisms of action still remain poorly understood. Here, we described that in vitro atorvastatin (ATO) treatment was not toxic to splenocytes, constrained cell proliferation and modulated IL-6 and IL-10 production in a dose-dependent manner. Mice exposed to dextran sulfate sodium (DSS) for colitis induction and treated with ATO shifted their immune response from Th17 towards Th2, improved the clinical and histological aspects of intestinal inflammation and reduced the number of circulating leukocytes. Both experimental and in silico analyses revealed that PPAR-α expression is reduced in experimental colitis, which was reversed by ATO treatment. While IBD patients also downregulate PPAR-α expression, the responsiveness to biological therapy relied on the restoration of PPAR-α levels. Indeed, the in vitro and in vivo effects induced by ATO treatment were abrogated in Ppara-/- mice or leukocytes. In conclusion, the beneficial effects of ATO in colitis are dependent on PPAR-α, which could also be a potential predictive biomarker of therapy responsiveness in IBD.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 3455-3455
Author(s):  
Paola Neri ◽  
Pierfrancesco Tassone ◽  
Masood Shammas ◽  
Hiroshi Yasui ◽  
Ernestina Schipani ◽  
...  

Abstract Atiprimod (N-N-diethl-8, 8-dipropyl-2-azaspiro [4.5] decane-2-propanamine) is a novel orally bio-available agent with anti-inflammatory properties. Although its in vitro anti-MM activity have been previously reported, here we have investigated molecular changes induced by Atiprimod as well as its in vivo activity in murine models of MM. Atiprimod inhibits in vitro growth and survival of IL-6 dependent as well as independent MM cell-lines in a time- and dose-dependent manner. Evaluation of changes in gene expression profile following treatment with Atiprimod identified down-regulation of genes involved in adhesion, cell-signalling, cell-cycle and BMP pathways and up-regulation of genes implicated in apoptosis and bone metabolism. The signalling pathway analysis identified the integrin, TGF-beta and FGF signaling as well as Wnt/b-catenin, IGF1 and cell cycle regulation networks as being most modulated by Atiprimod treatment. Next, we evaluated its in vivo activity in three different murine models of MM. A xenograft model bearing subcutaneous MM cells confirmed in vivo the anti-MM activity of Atiprimod and established its dose-response activity; a model based on engraftment of human fetal bone chip implanted in SCID mice (SCID-hu) with INA-6 cells, confirmed its ability to overcome the protective effects of the bone marrow milieu on MM cell growth, survival and drug resistance; and a SCID-hu model engrafted with primary patient MM cells confirmed its activity in the context of primary human disease recapitulating the clinical condition. Finally, we observed reduced number of osteoclasts, following Atiprimod treatment, compared to control bone samples confirming its beneficial effects on bone remodelling. Taken together, these data demonstrate the in vitro and in vivo anti-tumor activity of Atiprimod and delineate potential molecular targets triggered by this agent, providing a preclinical rational for its clinical evaluation in MM.


Sign in / Sign up

Export Citation Format

Share Document