scholarly journals A TPR scaffold couples signal detection to OdhI phosphorylation in metabolic control by the protein kinase PknG

2021 ◽  
Author(s):  
Maria Natalia Lisa ◽  
Adria Sogues ◽  
Nathalie Barilone ◽  
Meike Baumgart ◽  
Magdalena Gil ◽  
...  

Signal transduction is essential for bacteria to adapt to changing environmental conditions. Among many forms of post-translational modifications, reversible protein phosphorylation has evolved as a ubiquitous molecular mechanism of protein regulation in response to specific stimuli. The Ser/Thr protein kinase PknG modulates the fate of intracellular glutamate by controlling the phosphorylation status of the 2-oxoglutarate dehydrogenase regulator OdhI, a function that is conserved among diverse actinobacteria. PknG has a modular organization characterized by the presence of regulatory domains surrounding the catalytic domain. Here we present an investigation through in vivo experiments as well as biochemical and structural methods of the molecular bases of the regulation of PknG from C. glutamicum (CgPknG), in the light of previous knowledge available for the kinase from M. tuberculosis (MtbPknG). We found that OdhI phosphorylation by CgPknG is regulated by a conserved mechanism that depends on a C-terminal domain composed of tetratricopeptide repeats (TPR) essential for metabolic homeostasis. Furthermore, we identified a conserved structural motif that physically connects the TPR domain and a flexible N-terminal extension of the kinase that is involved in docking interactions with OdhI. Based on our results and previous reports, we propose a model in which the TPR domain of PknG couples signal detection to the specific phosphorylation of OdhI. Overall, the available data indicate that conserved PknG domains in distant actinobacteria retain their roles in kinase regulation in response to nutrient availability.

Author(s):  
Yangmei Zhang ◽  
Xichang Zhou ◽  
Long Cheng ◽  
Xiang Wang ◽  
Qinglin Zhang ◽  
...  

PRKAA1 (protein kinase AMP-activated catalytic subunit α 1) is a catalytic subunit of AMP-activated protein kinase (AMPK), which plays a key role in regulating cellular energy metabolism through phosphorylation, and genetic variations in the PRKAA1 have been found to be associated with gastric cancer risk. However, the effect and underlying molecular mechanism of PRKAA1 on gastric cancer tumorigenesis, especially the proliferation and apoptosis, are not fully understood. Our data showed that PRKAA1 is highly expressed in BGC-823 and MKN45 cells and is expressed low in SGC-7901 and MGC-803 cells in comparison with the other gastric cancer cells. PRKAA1 downregulation by shRNA or treatment of AMPK inhibitor compound C significantly inhibited proliferation as well as promoted cell cycle arrest and apoptosis of BGC-823 and MKN45 cells. Moreover, the expression of PCNA and Bcl-2 and the activity of JNK1 and Akt signaling were also reduced in BGC-823 and MKN45 cells after PRKAA1 downregulation. In vivo experiments demonstrated that tumor growth in nude mice was significantly inhibited after PRKAA1 silencing. Importantly, inactivation of JNK1 or Akt signaling pathway significantly inhibited PRKAA1 overexpression-induced increased cell proliferation and decreased cell apoptosis in MGC-803 cells. In conclusion, our findings suggest that PRKAA1 increases proliferation and restrains apoptosis of gastric cancer cells through activating JNK1 and Akt pathways.


2006 ◽  
Vol 394 (3) ◽  
Author(s):  
Mark H. Rider

The AMPK (AMP-activated protein kinase)-related protein kinase subfamily of the human kinome comprises 12 members closely related to the catalytic α1/α2 subunits of AMPK. The precise role of the AMPK-related kinases and their in vivo substrates is rather unclear at present, but some are involved in regulating cell polarity, whereas others appear to control cellular differentiation. Of the 12 human AMPK-related protein kinase family members, 11 can be activated following phosphorylation of their T-loop threonine residue by the LKB1 complex. Nine of these AMPK-related kinases activated by LKB1 contain an UBA (ubiquitin-associated) domain immediately C-terminal to the kinase catalytic domain. In this issue of the Biochemical Journal, Jaleel et al. show that the presence of an UBA domain in AMP-related kinases allows LKB1-induced phosphorylation and activation. The findings have implications for understanding the molecular mechanisms of activation of this fascinating family of protein kinases. Also, mutations in the UBA domains of the AMP-related kinase genes might be present in families with Peutz–Jehgers syndrome and in other cancer patients.


2019 ◽  
Vol 116 (3) ◽  
pp. 576-591 ◽  
Author(s):  
Panagiotis Efentakis ◽  
Aimilia Varela ◽  
Evangelia Chavdoula ◽  
Fragiska Sigala ◽  
Despina Sanoudou ◽  
...  

Abstract Aims Levosimendan (LEVO) a clinically-used inodilator, exerts multifaceted cardioprotective effects. Case-studies indicate protection against doxorubicin (DXR)-induced cardiotoxicity, but this effect remains obscure. We investigated the effect and mechanism of different regimens of levosimendan on sub-chronic and chronic doxorubicin cardiotoxicity. Methods and results Based on preliminary in vivo experiments, rats serving as a sub-chronic model of doxorubicin-cardiotoxicity and were divided into: Control (N/S-0.9%), DXR (18 mg/kg-cumulative), DXR+LEVO (LEVO, 24 μg/kg-cumulative), and DXR+LEVO (acute) (LEVO, 24 μg/kg-bolus) for 14 days. Protein kinase-B (Akt), endothelial nitric oxide synthase (eNOS), and protein kinase-A and G (PKA/PKG) pathways emerged as contributors to the cardioprotection, converging onto phospholamban (PLN). To verify the contribution of PLN, phospholamban knockout (PLN−/−) mice were assigned to PLN−/−/Control (N/S-0.9%), PLN−/−/DXR (18 mg/kg), and PLN−/−/DXR+LEVO (ac) for 14 days. Furthermore, female breast cancer-bearing (BC) mice were divided into: Control (normal saline 0.9%, N/S 0.9%), DXR (18 mg/kg), LEVO, and DXR+LEVO (LEVO, 24 μg/kg-bolus) for 28 days. Echocardiography was performed in all protocols. To elucidate levosimendan’s cardioprotective mechanism, primary cardiomyocytes were treated with doxorubicin or/and levosimendan and with N omega-nitro-L-arginine methyl ester (L-NAME), DT-2, and H-89 (eNOS, PKG, and PKA inhibitors, respectively); cardiomyocyte-toxicity was assessed. Single bolus administration of levosimendan abrogated DXR-induced cardiotoxicity and activated Akt/eNOS and cAMP-PKA/cGMP-PKG/PLN pathways but failed to exert cardioprotection in PLN−/− mice. Levosimendan’s cardioprotection was also evident in the BC model. Finally, in vitro PKA inhibition abrogated levosimendan-mediated cardioprotection, indicating that its cardioprotection is cAMP-PKA dependent, while levosimendan preponderated over milrinone and dobutamine, by ameliorating calcium overload. Conclusion Single dose levosimendan prevented doxorubicin cardiotoxicity through a cAMP-PKA-PLN pathway, highlighting the role of inotropy in doxorubicin cardiotoxicity.


2002 ◽  
Vol 22 (20) ◽  
pp. 6959-6970 ◽  
Author(s):  
Bertrand Cariou ◽  
Dominique Perdereau ◽  
Katia Cailliau ◽  
Edith Browaeys-Poly ◽  
Véronique Béréziat ◽  
...  

ABSTRACT Grb14 is a member of the Grb7 family of adapters and acts as a negative regulator of insulin-mediated signaling. Here we found that the protein kinase Cζ (PKCζ) interacting protein, ZIP, interacted with Grb14. Coimmunoprecipitation experiments demonstrated that ZIP bound to both Grb14 and PKCζ, thereby acting as a link in the assembly of a PKCζ-ZIP-Grb14 heterotrimeric complex. Mapping studies indicated that ZIP interacted through its ZZ zinc finger domain with the phosphorylated insulin receptor interacting region (PIR) of Grb14. PKCζ phosphorylated Grb14 under in vitro conditions and in CHO-IR cells as demonstrated by in vivo labeling experiments. Furthermore, Grb14 phosphorylation was increased under insulin stimulation, suggesting that the PKCζ-ZIP-Grb14 complex is involved in insulin signaling. The PIR of Grb14, which also interacts with the catalytic domain of the insulin receptor (IR) and inhibits its activity, was preferentially phosphorylated by PKCζ. Interestingly, the phosphorylation of Grb14 by PKCζ increased its inhibitory effect on IR tyrosine kinase activity in vitro. The role of ZIP and Grb14 in insulin signaling was further investigated in vivo in Xenopus laevis oocytes. In this model, ZIP potentiated the inhibitory action of Grb14 on insulin-induced oocyte maturation. Importantly, this effect required the recruitment of PKCζ and the phosphorylation of Grb14, providing in vivo evidences for a regulation of Grb14-inhibitory action by ZIP and PKCζ. Together, these results suggest that Grb14, ZIP, and PKCζ participate in a new feedback pathway of insulin signaling.


2013 ◽  
Vol 33 (6) ◽  
Author(s):  
James M. J. Dickson ◽  
Woo-Jeong Lee ◽  
Peter R. Shepherd ◽  
Christina M. Buchanan

NTT (N-terminal tags) on the catalytic (p110) sub-unit of PI 3-K (phosphoinositol 3-kinase) have previously been shown to increase cell signalling and oncogenic transformation. Here we test the impact of an NT (N-terminal) His-tag on in vitro lipid and protein kinase activity of all class-1 PI 3-K isoforms and two representative oncogenic mutant forms (E545K and H1047R), in order to elucidate the mechanisms behind this elevated signalling and transformation observed in vivo. Our results show that an NT His-tag has no impact on lipid kinase activity as measured by enzyme titration, kinetics and inhibitor susceptibility. Conversely, the NT His-tag did result in a differential effect on protein kinase activity, further potentiating the elevated protein kinase activity of both the helical domain and catalytic domain oncogenic mutants with relation to p110 phosphorylation. All other isoforms also showed elevated p110 phosphorylation (although not statistically significant). We conclude that the previously reported increase in cell signalling and oncogenic-like transformation in response to p110 NTT is not mediated via an increase in the lipid kinase activity of PI 3-K, but may be mediated by increased p110 autophosphorylation and/or other, as yet unidentified, intracellular protein/protein interactions. We further observe that tagged recombinant protein is suitable for use in in vitro lipid kinase screens to identify PI 3-K inhibitors; however, we recommend that in vivo (including intracellular) experiments and investigations into the protein kinase activity of PI 3-K should be conducted with untagged constructs.


2003 ◽  
Vol 373 (2) ◽  
pp. 571-581 ◽  
Author(s):  
Angie F. KIRWAN ◽  
Ashley C. BIBBY ◽  
Thierry MVILONGO ◽  
Heimo RIEDEL ◽  
Thomas BURKE ◽  
...  

The N-terminal pseudosubstrate site within the protein kinase Cα (PKCα)-regulatory domain has long been regarded as the major determinant for autoinhibition of catalytic domain activity. Previously, we observed that the PKC-inhibitory capacity of the human PKCα-regulatory domain was only reduced partially on removal of the pseudosubstrate sequence [Parissenti, Kirwan, Kim, Colantonio and Schimmer (1998) J. Biol. Chem. 273, 8940–8945]. This finding suggested that one or more additional region(s) contributes to the inhibition of catalytic domain activity. To assess this hypothesis, we first examined the PKC-inhibitory capacity of a smaller fragment of the PKCα-regulatory domain consisting of the C1a, C1b and V2 regions [GST-Rα39–177: this protein contained the full regulatory domain of human PKCα fused to glutathione S-transferase (GST), but lacked amino acids 1–38 (including the pseudosubstrate sequence) and amino acids 178–270 (including the C2 region)]. GST-Rα39–177 significantly inhibited PKC in a phorbol-independent manner and could not bind the peptide substrate used in our assays. These results suggested that a region within C1/V2 directly inhibits catalytic domain activity. Providing further in vivo support for this hypothesis, we found that expression of N-terminally truncated pseudosubstrate-less bovine PKCα holoenzymes in yeast was capable of inhibiting cell growth in a phorbol-dependent manner. This suggested that additional autoinhibitory force(s) remained within the truncated holoenzymes that could be relieved by phorbol ester. Using tandem PCR-mediated mutagenesis, we observed that mutation of amino acids 33–86 within GST-Rα39–177 dramatically reduced its PKC-inhibitory capacity when protamine was used as substrate. Mutagenesis of a broad range of sequences within C2 (amino acids 159–242) also significantly reduced PKC-inhibitory capacity. Taken together, these observations support strongly the existence of multiple regions within the PKCα-regulatory domain that play a direct role in the inhibition of catalytic domain activity.


2010 ◽  
Vol 299 (3) ◽  
pp. C614-C620 ◽  
Author(s):  
Kenneth B. Gagnon ◽  
Eric Delpire

Threonines targeted by Ste20-related proline-alanine-rich kinase (SPAK) for phosphorylation have been identified in Na+-K+-2Cl− cotransporter type 1 (NKCC1), NKCC2, and Na+-Cl− cotransporter (NCC). However, what constitutes the substrate recognition of the kinase is still unknown. Using site-directed mutagenesis and functional measurement of NKCC1 activity in Xenopus laevis oocytes, we determined that SPAK recognizes two threonine residues separated by four amino acids. Addition or removal of a single residue abrogated SPAK activation of NKCC1. Although both threonines are followed by hydrophobic residues, in vivo experiments have determined that SPAK activation of the cotransporter only requires a hydrophobic residue after the first threonine. Interestingly, downstream of the second threonine residue, we have identified a conserved aspartic acid residue which is critical for NKCC1 function. Mouse SPAK activity requires phosphorylation of two specific residues by WNK [with no lysine (K)] kinases: a threonine (T243) in the catalytic domain and a serine (S383) in the regulatory domain. We found that mutating the threonine residue into a glutamic acid (T243E) combined with mutation of the serine into an aspartic acid (S383D) rendered SPAK constitutively active. Surprisingly, alanine substitution of S383 or mutation of residues surrounding this residue also resulted in a constitutively active kinase. Interestingly, deletion of amino acids 356–398 identified another serine residue in the catalytic domain (S321) as another putative target of WNK phosphorylation. We found that WNK4 is capable of stimulating the deletion mutant when S321 is present, but not when S321 is mutated into an alanine.


2010 ◽  
Vol 432 (1) ◽  
pp. 153-163 ◽  
Author(s):  
Sharon A. Matthews ◽  
Maria N. Navarro ◽  
Linda V. Sinclair ◽  
Elizabeth Emslie ◽  
Carmen Feijoo-Carnero ◽  
...  

Mammalian PKD (protein kinase D) isoforms have been implicated in the regulation of diverse biological processes in response to diacylglycerol and PKC (protein kinase C) signalling. To compare the functions of PKD1 and PKD2 in vivo, we generated mice deficient in either PKD1 or PKD2 enzymatic activity, via homozygous expression of PKD1S744A/S748A or PKD2S707A/S711A ‘knockin’ alleles. We also examined PKD2-deficient mice generated using ‘gene-trap’ technology. We demonstrate that, unlike PKD1, PKD2 catalytic activity is dispensable for normal embryogenesis. We also show that PKD2 is the major PKD isoform expressed in lymphoid tissues, but that PKD2 catalytic activity is not essential for the development of mature peripheral T- and B-lymphocytes. PKD2 catalytic activity is, however, required for efficient antigen receptor-induced cytokine production in T-lymphocytes and for optimal T-cell-dependent antibody responses in vivo. Our results reveal a key in vivo role for PKD2 in regulating the function of mature peripheral lymphocytes during adaptive immune responses. They also confirm the functional importance of PKC-mediated serine phosphorylation of the PKD catalytic domain for PKD activation and downstream signalling and reveal that different PKD family members have unique and non-redundant roles in vivo.


1996 ◽  
Vol 16 (8) ◽  
pp. 4172-4181 ◽  
Author(s):  
M Gale ◽  
S L Tan ◽  
M Wambach ◽  
M G Katze

Expression of the double-stranded RNA-activated protein kinase (PKR) is induced by interferons, with PKR activity playing a pivotal role in establishing the interferon-induced antiviral and antiproliferative states. PKR is directly regulated by physical association with the specific inhibitor, P58IPK, a cellular protein of the tetratricopeptide repeat (TPR) family, and K3L, the product of the corresponding vaccinia virus gene. P58IPK and K3L repress PKR activation and activity. To investigate the mechanism of P58IPK- and K3L-mediated PKR inhibition, we have used a combination of in vitro and in vivo binding assays to identify the interactive regions of these proteins. The P58IPK-interacting site of PKR was mapped to a 52-amino-acid aa segment (aa 244 to 296) spanning the ATP-binding region of the protein kinase catalytic domain. The interaction with PKR did not require the C-terminal DNA-J homology region of P58IPK but was dependent on the presence of the eukaryotic initiation factor 2-alpha homology region, mapping to the 34 aa within the sixth P58IPK TPR motif. Consistent with other TPR proteins, P58IPK formed multimers in vivo: the N-terminal 166 aa were both necessary and sufficient for complex formation. A parallel in vivo analysis to map the K3L-binding region of PKR revealed that like P58IPK , K3L interacted exclusively with the PKR protein kinase catalytic domain. In contrast, however, the K3L-binding region of PKR was localized to within aa 367 to 551, demonstrating that each inhibitor bound PKR in unique, nonoverlapping domains. These data, taken together, suggest that P58IPK and K3L may mediate PKR inhibition by distinct mechanisms. Finally, we will propose a model of PKR inhibition in which P58IPK or a P58IPK complex binds PKR and interferes with nucleotide binding and autoregulation, while formation of a PKR-K3L complex interferes with active-site function and/or substrate association.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Philipp Bengel ◽  
Nataliya Dybkova ◽  
Petros Tirilomis ◽  
Shakil Ahmad ◽  
Nico Hartmann ◽  
...  

AbstractAn interplay between Ca2+/calmodulin-dependent protein kinase IIδc (CaMKIIδc) and late Na+ current (INaL) is known to induce arrhythmias in the failing heart. Here, we elucidate the role of the sodium channel isoform NaV1.8 for CaMKIIδc-dependent proarrhythmia. In a CRISPR-Cas9-generated human iPSC-cardiomyocyte homozygous knock-out of NaV1.8, we demonstrate that NaV1.8 contributes to INaL formation. In addition, we reveal a direct interaction between NaV1.8 and CaMKIIδc in cardiomyocytes isolated from patients with heart failure (HF). Using specific blockers of NaV1.8 and CaMKIIδc, we show that NaV1.8-driven INaL is CaMKIIδc-dependent and that NaV1.8-inhibtion reduces diastolic SR-Ca2+ leak in human failing cardiomyocytes. Moreover, increased mortality of CaMKIIδc-overexpressing HF mice is reduced when a NaV1.8 knock-out is introduced. Cellular and in vivo experiments reveal reduced ventricular arrhythmias without changes in HF progression. Our work therefore identifies a proarrhythmic CaMKIIδc downstream target which may constitute a prognostic and antiarrhythmic strategy.


Sign in / Sign up

Export Citation Format

Share Document