scholarly journals Transcriptomic analysis of dorsal and ventral subiculum after induction of acute seizures by electric stimulation of the perforant pathway in rats

2021 ◽  
Author(s):  
Beatriz B Aoyama ◽  
Gabriel G Zanetti ◽  
Elayne V Dias ◽  
Maria CP Athie ◽  
Iscia Lopes-Cendes ◽  
...  

Preconditioning is a mechanism in which injuries induced by non-lethal hypoxia or seizures trigger cellular resistance to subsequent events. Norwood et al., in a 2010 study, showed that an 8-hour-long period of electrical stimulation of the perforant pathway in rats is required for the induction of hippocampal sclerosis. However, in order to avoid generalized seizures, status epilepticus (SE), and death, a state of resistance to seizures must be induced in the hippocampus by a preconditioning paradigm consisting of 2 daily 30-minute stimulation periods. Due to the importance of the subiculum in the hippocampal formation, this study aims to investigate differential gene expression patterns in the dorsal and ventral subiculum using RNA-sequencing, after induction of a preconditioning protocol by electrical stimulation of the perforant pathway. The dorsal (dSub) and ventral (vSub) subiculum regions were collected by laser-microdissection 24 hours after preconditioning protocol induction in rats. RNA sequencing was performed in a Hiseq 4000 platform, reads were aligned using the STAR and DESEq2 statistics package was used to estimate gene expression. We identified 1176 differentially expressed genes comparing control to preconditioned subiculum regions, 204 genes were differentially expressed in dSub and 972 in vSub. The gene ontology enrichment analysis showed that the most significant common enrichment pathway considering up-regulated genes in dSub and vSub was Cholesterol Biosynthesis. In contrast, the most significant enrichment pathway considering down-regulated genes in vSub was Axon guidance. Our results indicate that preconditioning induces synaptic reorganization, increased cholesterol metabolism, and astrogliosis in both dSub and vSub. Both regions also presented a decrease in glutamatergic transmission, an increase in complement system activation, and increased in GABAergic transmission. The down-regulation of proapoptotic and axon guidance genes in the ventral subiculum suggests that preconditioning induces a neuroprotective environment in this region.

2020 ◽  
Vol 17 (9) ◽  
pp. 4183-4189
Author(s):  
Nisha Baid ◽  
Preethi Meghadri ◽  
Vinai G. Biju ◽  
Blessy B. Mathew ◽  
C. M. Prashanth

The gene structure of organisms gets altered when exposed to an abnormal condition which could adversely affect the growth of the target. RNA sequencing can be deployed to identify diseasecausing mutations in the genes of patients for whom genetic analysis failed to return a diagnosis. One such disease is Hypoxia, a condition in which there is a deficiency in the availability of oxygen in the tissues. RNA sequencing helps in analyzing the global expression patterns of hypoxia and in understanding the cellular alterations of those suffering from it. It gives an understanding of the comprehensive regulation of the gene expression by environmental spur or specific factors which can be used to diagnose and treat hypoxia before it gets fatal. Prunus persica is a plant which has a high capacity for anoxic tolerance, and analyzing the gene expression changes which are associated to hypoxia treatments in the root tissues of two genotypes of the peach plant (Flooding tolerant and Flooding sensitive) can prevent physiological disorders. Further, gene ontology is used to cover three domains-cellular component, molecular function and biological processes related to the differentially expressed genes. We use Generalized Linear Models here, to find the differentially expressed genes in Prunus persica when exposed to the conditions of Hypoxia (Absence of Oxygen) and Normoxia (Excess of Oxygen) and find their Ontologies and genomic pathways to understand and diagnose the Processes that are most affected.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Aliki Xanthopoulou ◽  
Javier Montero-Pau ◽  
Belén Picó ◽  
Panagiotis Boumpas ◽  
Eleni Tsaliki ◽  
...  

Abstract Background Summer squash (Cucurbita pepo: Cucurbitaceae) are a popular horticultural crop for which there is insufficient genomic and transcriptomic information. Gene expression atlases are crucial for the identification of genes expressed in different tissues at various plant developmental stages. Here, we present the first comprehensive gene expression atlas for a summer squash cultivar, including transcripts obtained from seeds, shoots, leaf stem, young and developed leaves, male and female flowers, fruits of seven developmental stages, as well as primary and lateral roots. Results In total, 27,868 genes and 2352 novel transcripts were annotated from these 16 tissues, with over 18,000 genes common to all tissue groups. Of these, 3812 were identified as housekeeping genes, half of which assigned to known gene ontologies. Flowers, seeds, and young fruits had the largest number of specific genes, whilst intermediate-age fruits the fewest. There also were genes that were differentially expressed in the various tissues, the male flower being the tissue with the most differentially expressed genes in pair-wise comparisons with the remaining tissues, and the leaf stem the least. The largest expression change during fruit development was early on, from female flower to fruit two days after pollination. A weighted correlation network analysis performed on the global gene expression dataset assigned 25,413 genes to 24 coexpression groups, and some of these groups exhibited strong tissue specificity. Conclusions These findings enrich our understanding about the transcriptomic events associated with summer squash development and ripening. This comprehensive gene expression atlas is expected not only to provide a global view of gene expression patterns in all major tissues in C. pepo but to also serve as a valuable resource for functional genomics and gene discovery in Cucurbitaceae.


2021 ◽  
Vol 22 (4) ◽  
pp. 1901
Author(s):  
Brielle Jones ◽  
Chaoyang Li ◽  
Min Sung Park ◽  
Anne Lerch ◽  
Vimal Jacob ◽  
...  

Mesenchymal stromal cells derived from the fetal placenta, composed of an amnion membrane, chorion membrane, and umbilical cord, have emerged as promising sources for regenerative medicine. Here, we used next-generation sequencing technology to comprehensively compare amniotic stromal cells (ASCs) with chorionic stromal cells (CSCs) at the molecular and signaling levels. Principal component analysis showed a clear dichotomy of gene expression profiles between ASCs and CSCs. Unsupervised hierarchical clustering confirmed that the biological repeats of ASCs and CSCs were able to respectively group together. Supervised analysis identified differentially expressed genes, such as LMO3, HOXA11, and HOXA13, and differentially expressed isoforms, such as CXCL6 and HGF. Gene Ontology (GO) analysis showed that the GO terms of the extracellular matrix, angiogenesis, and cell adhesion were significantly enriched in CSCs. We further explored the factors associated with inflammation and angiogenesis using a multiplex assay. In comparison with ASCs, CSCs secreted higher levels of angiogenic factors, including angiogenin, VEGFA, HGF, and bFGF. The results of a tube formation assay proved that CSCs exhibited a strong angiogenic function. However, ASCs secreted two-fold more of an anti-inflammatory factor, TSG-6, than CSCs. In conclusion, our study demonstrated the differential gene expression patterns between ASCs and CSCs. CSCs have superior angiogenic potential, whereas ASCs exhibit increased anti-inflammatory properties.


Animals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 2311
Author(s):  
Hao Ding ◽  
Yueyue Lin ◽  
Tao Zhang ◽  
Lan Chen ◽  
Genxi Zhang ◽  
...  

The mechanisms behind the gene expression and regulation that modulate the development and growth of pigeon skeletal muscle remain largely unknown. In this study, we performed gene expression analysis on skeletal muscle samples at different developmental and growth stages using RNA sequencing (RNA−Seq). The differentially expressed genes (DEGs) were identified using edgeR software. Weighted gene co−expression network analysis (WGCNA) was used to identify the gene modules related to the growth and development of pigeon skeletal muscle based on DEGs. A total of 11,311 DEGs were identified. WGCNA aggregated 11,311 DEGs into 12 modules. Black and brown modules were significantly correlated with the 1st and 10th day of skeletal muscle growth, while turquoise and cyan modules were significantly correlated with the 8th and 13th days of skeletal muscle embryonic development. Four mRNA−mRNA regulatory networks corresponding to the four significant modules were constructed and visualised using Cytoscape software. Twenty candidate mRNAs were identified based on their connectivity degrees in the networks, including Abca8b, TCONS−00004461, VWF, OGDH, TGIF1, DKK3, Gfpt1 and RFC5, etc. A KEGG pathway enrichment analysis showed that many pathways were related to the growth and development of pigeon skeletal muscle, including PI3K/AKT/mTOR, AMPK, FAK, and thyroid hormone pathways. Five differentially expressed genes (LAST2, MYPN, DKK3, B4GALT6 and OGDH) in the network were selected, and their expression patterns were quantified by qRT−PCR. The results were consistent with our sequencing results. These findings could enhance our understanding of the gene expression and regulation in the development and growth of pigeon muscle.


Genes ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 82
Author(s):  
Yunxiao Wei ◽  
Guoliang Li ◽  
Shujiang Zhang ◽  
Shifan Zhang ◽  
Hui Zhang ◽  
...  

Allopolyploidy is an evolutionary and mechanistically intriguing process involving the reconciliation of two or more sets of diverged genomes and regulatory interactions, resulting in new phenotypes. In this study, we explored the gene expression patterns of eight F2 synthetic Brassica napus using RNA sequencing. We found that B. napus allopolyploid formation was accompanied by extensive changes in gene expression. A comparison between F2 and the parent shows a certain proportion of differentially expressed genes (DEG) and activation\silent gene, and the two genomes (female parent (AA)\male parent (CC) genomes) showed significant differences in response to whole-genome duplication (WGD); non-additively expressed genes represented a small portion, while Gene Ontology (GO) enrichment analysis showed that it played an important role in responding to WGD. Besides, genome-wide expression level dominance (ELD) was biased toward the AA genome, and the parental expression pattern of most genes showed a high degree of conservation. Moreover, gene expression showed differences among eight individuals and was consistent with the results of a cluster analysis of traits. Furthermore, the differential expression of waxy synthetic pathways and flowering pathway genes could explain the performance of traits. Collectively, gene expression of the newly formed allopolyploid changed dramatically, and this was different among the selfing offspring, which could be a prominent cause of the trait separation. Our data provide novel insights into the relationship between the expression of differentially expressed genes and trait segregation and provide clues into the evolution of allopolyploids.


iScience ◽  
2021 ◽  
Vol 24 (4) ◽  
pp. 102357
Author(s):  
Brenda Morsey ◽  
Meng Niu ◽  
Shetty Ravi Dyavar ◽  
Courtney V. Fletcher ◽  
Benjamin G. Lamberty ◽  
...  

Stroke ◽  
2014 ◽  
Vol 45 (suppl_1) ◽  
Author(s):  
Blake Haas ◽  
Nestor R Gonzalez ◽  
Elina Nikkola ◽  
Mark Connolly ◽  
William Hsu ◽  
...  

Introduction: Intracranial aneurysms (IA) growth and rupture have been associated with chronic remodeling of the arterial wall. However, the pathobiology of this process remains poorly understood. The objective of the present study was to evaluate the feasibility of analyzing gene expression patterns in peripheral blood of patients with ruptured and unruptured saccular IAs. Materials and Methods: We analyzed human whole blood transcriptomes by performing paired-end, 100 bp RNA-sequencing (RNAseq) using the Illumina platform. We used STAR to align reads to the genome, HTSeq to count reads, and DESeq to normalize counts across samples. Self-reported patient information was used to correct expression values for ancestry, age, and sex. We utilized weighted gene co-expression network analysis (WGCNA) to identify gene expression network modules associated with IA size and rupture. The DAVID tool was employed to search for Gene Ontology enrichment in relevant modules. Results: Samples from 12 patients (9 females, age 57.6 +/-12) with IAs were analyzed. Four had ruptured aneurysms. RNA isolation and application of the methodology described above was successful in all samples. Although the small sample size prevents us from drawing definite conclusions, we observed promising novel co-expression networks for IAs: WCGNA analysis showed down-regulation of two transcript modules associated with ruptured IA status (r=-0.78, p=0.008 and r=-0.77, p=0.009), and up-regulation of two modules associated with aneurysm size (r=0.86, p=0.002 and r=0.9, p=4e-04), respectively. DAVID analyses showed that genes upregulated in an IA size-associated module were enriched with genes involved in cellular respiration and translation, while genes involved in transcription were down-regulated in a module associated with ruptured IAs. Conclusions: Whole blood RNAseq analysis is a feasible tool to capture transcriptome dynamics and achieve a better understanding of the pathophysiology of IAs. Further longitudinal studies of patients with IAs using network analysis are justified.


2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
Floranne Boulogne ◽  
Laura Claus ◽  
Henry Wiersma ◽  
Roy Oelen ◽  
Floor Schukking ◽  
...  

Abstract Background and Aims Genetic testing in patients with suspected hereditary kidney disease does not always reveal the genetic cause for the patient's disorder. Potentially pathogenic variants can reside in genes that are not known to be involved in kidney disease, which makes it difficult to prioritize and interpret the relevance of these variants. As such, there is a clear need for methods that predict the phenotypic consequences of gene expression in a way that is as unbiased as possible. To help identify candidate genes we have developed KidneyNetwork, in which tissue-specific expression is utilized to predict kidney-specific gene functions. Method We combined gene co-expression in 878 publicly available kidney RNA-sequencing samples with the co-expression of a multi-tissue RNA-sequencing dataset of 31,499 samples to build KidneyNetwork. The expression patterns were used to predict which genes have a kidney-related function, and which (disease) phenotypes might be caused when these genes are mutated. By integrating the information from the HPO database, in which known phenotypic consequences of disease genes are annotated, with the gene co-expression network we obtained prediction scores for each gene per HPO term. As proof of principle, we applied KidneyNetwork to prioritize variants in exome-sequencing data from 13 kidney disease patients without a genetic diagnosis. Results We assessed the prediction performance of KidneyNetwork by comparing it to GeneNetwork, a multi-tissue co-expression network we previously developed. In KidneyNetwork, we observe a significantly improved prediction accuracy of kidney-related HPO-terms, as well as an increase in the total number of significantly predicted kidney-related HPO-terms (figure 1). To examine its clinical utility, we applied KidneyNetwork to 13 patients with a suspected hereditary kidney disease without a genetic diagnosis. Based on the HPO terms “Renal cyst” and “Hepatic cysts”, combined with a list of potentially damaging variants in one of the undiagnosed patients with mild ADPKD/PCLD, we identified ALG6 as a new candidate gene. ALG6 bears a high resemblance to other genes implicated in this phenotype in recent years. Through the 100,000 Genomes Project and collaborators we identified three additional patients with kidney and/or liver cysts carrying a suspected deleterious variant in ALG6. Conclusion We present KidneyNetwork, a kidney specific co-expression network that accurately predicts what genes have kidney-specific functions and may result in kidney disease. Gene-phenotype associations of genes unknown for kidney-related phenotypes can be predicted by KidneyNetwork. We show the added value of KidneyNetwork by applying it to exome sequencing data of kidney disease patients without a molecular diagnosis and consequently we propose ALG6 as a promising candidate gene. KidneyNetwork can be applied to clinically unsolved kidney disease cases, but it can also be used by researchers to gain insight into individual genes to better understand kidney physiology and pathophysiology. Acknowledgments This research was made possible through access to the data and findings generated by the 100,000 Genomes Project; http://www.genomicsengland.co.uk.


2004 ◽  
Vol 17 (1) ◽  
pp. 11-20 ◽  
Author(s):  
David M. Mutch ◽  
Pascale Anderle ◽  
Muriel Fiaux ◽  
Robert Mansourian ◽  
Karine Vidal ◽  
...  

The ATP-binding cassette (ABC) family of proteins comprise a group of membrane transporters involved in the transport of a wide variety of compounds, such as xenobiotics, vitamins, lipids, amino acids, and carbohydrates. Determining their regional expression patterns along the intestinal tract will further characterize their transport functions in the gut. The mRNA expression levels of murine ABC transporters in the duodenum, jejunum, ileum, and colon were examined using the Affymetrix MuU74v2 GeneChip set. Eight ABC transporters (Abcb2, Abcb3, Abcb9, Abcc3, Abcc6, Abcd1, Abcg5, and Abcg8) displayed significant differential gene expression along the intestinal tract, as determined by two statistical models (a global error assessment model and a classic ANOVA, both with a P < 0.01). Concordance with semiquantitative real-time PCR was high. Analyzing the promoters of the differentially expressed ABC transporters did not identify common transcriptional motifs between family members or with other genes; however, the expression profile for Abcb9 was highly correlated with fibulin-1, and both genes share a common complex promoter model involving the NFκB, zinc binding protein factor (ZBPF), GC-box factors SP1/GC (SP1F), and early growth response factor (EGRF) transcription binding motifs. The cellular location of another of the differentially expressed ABC transporters, Abcc3, was examined by immunohistochemistry. Staining revealed that the protein is consistently expressed in the basolateral compartment of enterocytes along the anterior-posterior axis of the intestine. Furthermore, the intensity of the staining pattern is concordant with the expression profile. This agrees with previous findings in which the mRNA, protein, and transport function of Abcc3 were increased in the rat distal intestine. These data reveal regional differences in gene expression profiles along the intestinal tract and demonstrate that a complete understanding of intestinal ABC transporter function can only be achieved by examining the physiologically distinct regions of the gut.


Sign in / Sign up

Export Citation Format

Share Document