scholarly journals Trash-basket epiphytes as secondary foundation species: a review of their distribution and effects on biodiversity and ecosystem functions

2021 ◽  
Author(s):  
Gabriel Ortega-Solis ◽  
Ivan Diaz ◽  
Daniela Mellado-Mansilla ◽  
Camila Tejo ◽  
Francisco Tello ◽  
...  

Background: Secondary foundation species (FS) are organisms that inhabit ecosystems structurally defined by a primary foundation species, providing additional structure to habitats and communities. Trash-basket epiphytes (TBE) are secondary FS that enhance arboreal soil accumulation, providing shelter to animals, and rooting sites for plants. While their importance may vary across biomes, TBE have been overlooked as drivers of biodiversity and ecosystem functions. Here, we discuss the prevalence of TBE across biomes, their effects on biodiversity and ecosystem functions, and future research directions. Methods: We performed a systematic literature review of articles, books and theses and collated and synthesised information about the taxonomic distribution of TBE, their effects on ecosystem functions, and reports of plant-animal and plant-plant interactions. Then, we analysed the global distribution of TBE using a generalized linear model and summarised two studies to assess their effects on soil invertebrates. Results: We identified 120 publications describing 209 species of TBE. Most TBE belong to Araceae (43%), Polypodiaceae (23%), and Orchidaceae (14%) and occur in all tropical and southern temperate forests. TBE richness peaks in the South-American Pacific mangroves, Eastern Cordillera Real, and the Napo moist forests. TBE effects on ecosystem functions include arboreal soil accumulation, water retention and temperature regulation in the canopy, and nutrient leaching through stem-flow. TBE provide shelter to species in more than 97 animal families, including from invertebrates to mammals, while 72 vascular plants have been reported to root in arboreal soil of TBE. Conclusions: TBE are a compelling group of model organisms that can be used to study ecological processes such as facilitation cascades, niche construction, extended phenotypes, or the effects of secondary FS on biodiversity and ecosystem functioning. TBE should also be included in forest management plans to enhance the availability of microhabitats in the canopy supporting its associated flora and fauna.

2009 ◽  
Vol 6 (3) ◽  
pp. 287-289 ◽  
Author(s):  
Víctor Resco ◽  
José I. Querejeta ◽  
Kiona Ogle ◽  
Jordi Voltas ◽  
Maria-Teresa Sebastià ◽  
...  

Stable isotopes and their potential for detecting various and complex ecosystem processes are attracting an increasing number of scientists. Progress is challenging, particularly under global change scenarios, but some established views have been challenged. The IX meeting of the Spanish Association of Terrestrial Ecology (AAET, Úbeda, 18–22 October 2009) hosted a symposium on the ecology of stable isotopes where the linear mixing model approach of partitioning sinks and sources of carbon and water fluxes within an ecosystem was challenged, and new applications of stable isotopes for the study of plant interactions were evaluated. Discussion was also centred on the need for networks that monitor ecological processes using stable isotopes and key ideas for fostering future research with isotopes.


2012 ◽  
Vol 163 (6) ◽  
pp. 240-246 ◽  
Author(s):  
Thomas A. Nagel ◽  
Jurij Diaci ◽  
Dusan Rozenbergar ◽  
Tihomir Rugani ◽  
Dejan Firm

Old-growth forest reserves in Slovenia: the past, present, and future Slovenia has a small number of old-growth forest remnants, as well as many forest reserves approaching old-growth conditions. In this paper, we describe some of the basic characteristics of these old-growth remnants and the history of their protection in Slovenia. We then trace the long-term development of research in these old-growth remnants, with a focus on methodological changes. We also review some of the recent findings from old-growth research in Slovenia and discuss future research needs. The conceptual understanding of how these forests work has slowly evolved, from thinking of them in terms of stable systems to more dynamic and unpredictable ones due to the influence of natural disturbances and indirect human influences. In accordance with this thinking, the methods used to study old-growth forests have changed from descriptions of stand structure to studies that address natural processes and ecosystem functions.


2021 ◽  
pp. 147737082110006
Author(s):  
Wim Hardyns ◽  
Thom Snaphaan ◽  
Sara Willems ◽  
Lieven J. R. Pauwels

This study examines the ecological reliability, convergent validity and ecological stability of neighbourhood (dis)organizational processes measured by means of two methods: inhabitant surveys and the so-called key informant analysis technique. Considering that ecological processes play a major role in many contemporary criminological theories and research, it is vital to take into account methodological challenges and to question the reliability, validity and stability of the measures reflecting these underlying processes. (Dis)organizational processes are predominantly measured by means of questionnaires surveying neighbourhood inhabitants. To yield ecologically reliable and valid measures this approach requires large numbers of respondents. In this study we analyse the relationships between ecological measures of neighbourhood processes based on surveys of inhabitants versus key informants. The findings suggest that key informants can provide reliable, valid and stable measures of (dis)organizational neighbourhood processes. Therefore, the key informant analysis technique is an essential complementary, or even substitutive, method in the measurement of neighbourhood processes; shared survey-method variance is eliminated and it is possible to survey fewer key informants than inhabitants to obtain reliable and valid information on social trust and disorder. Nevertheless, this method is not suitable for measuring all neighbourhood processes, such as informal social control. Therefore, outstanding challenges and avenues for future research are discussed as well.


2021 ◽  
pp. 030913252199391
Author(s):  
Sara H Nelson ◽  
Patrick Bigger

The assertion that ‘ecosystems are infrastructure’ is now common in conservation science and ecosystem management. This article interrogates this infrastructural ontology, which we argue underpins diverse practices of conservation investment and ecosystem management focused on the strategic management of ecosystem functions to sustain and secure human life. We trace the genealogies and geographies of infrastructural nature as an ontology and paradigm of investment that coexists (sometimes in tension) with extractivist commodity regimes. We draw links between literatures on the political economy of ecosystem services and infrastructure and highlight three themes that hold promise for future research: labor, territory, and finance.


Koedoe ◽  
2008 ◽  
Vol 50 (1) ◽  
Author(s):  
Robert F. Brand ◽  
Pieter J. Du Preez ◽  
Leslie R. Brown

Within the Platberg area and the wider Drakensberg region, the shrinking natural resources and the threat posed to biodiversity are of concern to conservation management and require an understanding of long-term ecological processes. The vegetation of Platberg was investigated as part of an ecological survey to establish Afromontane floristic links to the Drakensberg as well as for the management of natural resources. From a TWINSPAN classification, refined by the Braun-Blanquet method, four main plant communities were identified, which were subdivided into fynbos, wetland, a woody/shrub community and grassland. A classification and description of the fynbos are presented in this article.The analysis showed the fynbos divided into two communities comprising four sub-communities and seven variants. The fynbos community had an average of 28.34 species per relevé, ranging from 14 to 54 species per sample plot. Twenty-four endemic or near-endemic Drakensberg Alpine Centre (DAC) species and 22 exotic (alien-invasive) species were recorded. Numerous floristic links with the DAC, Cape flora fynbos and grassland bioregions to the north and west were also found. The description of the fynbos plant communities can serve as a basis for the formulation of management plans for the area.


Koedoe ◽  
2004 ◽  
Vol 47 (2) ◽  
Author(s):  
G. Cleaver ◽  
L.R. Brown ◽  
G.J. Bredenkamp

The Kammanassie Mountain is a declared mountain catchment area and a Cape mountain zebra Equus zebra zebra population is preserved on the mountain. The high number of springs on the mountain not only provides water for the animal species but also contributes to overall ecosystem functioning. Long-term conservation of viable ecosystems requires a broader understanding of the ecological processes involved. It was therefore decided that a classification, description and mapping of the spring vegetation of the Kammanassie Mountain be undertaken. A TWINSPAN classification, refined by Braun-Blanquet procedures, revealed 11 major plant communities that could be related to geological origin. Habitat factors associated with differences in vegetation include topography, soil type and grazing. Descriptions of the plant communities include diagnostic species as well as prominent and less conspicuous species of the tree, shrub and herbaceous layers. The results also indicate a high species richness compared to similar regions and the difference between plant communities of wet and dry springs. This data is important for long-term monitoring of the spring ecosystems as well as for the compilation of management plans.


Author(s):  
Stefan Wötzel ◽  
Marco Andrello ◽  
Maria Albani ◽  
Marcus Koch ◽  
George Coupland ◽  
...  

Many model organisms have obtained a prominent status due to an advantageous combination of their life-history characteristics, genetic properties and also practical considerations. In non-crop plants, Arabidopsis thaliana is the most renowned model and has been used as study system to elucidate numerous biological processes at the molecular level. Once a complete genome sequence was available, research has markedly accelerated and further established A. thaliana as the reference to stimulate studies in other species with different biology. Within the Brassicaceae family, the arctic-alpine perennial Arabis alpina has become a model complementary to A. thaliana to study life-history evolution and ecological genomics in harsh environments. In this review, we provide an overview of the properties that facilitated the rapid emergence of A. alpina as a plant model. We summarize the evolutionary history of A. alpina, including the diversification of its mating system, and discuss recent progress in the molecular dissection of developmental traits that are related to its perennial life history and environmental adaptation. We indicate open questions from which future research might be developed in other Brassicaceae species or more distantly related plant families.


2018 ◽  
Author(s):  
Ramiro Logares ◽  
Ina M. Deutschmann ◽  
Caterina. R. Giner ◽  
Anders K. Krabberød ◽  
Thomas S. B. Schmidt ◽  
...  

ABSTRACTThe smallest members of the sunlit-ocean microbiome (prokaryotes and picoeukaryotes) participate in a plethora of ecosystem functions with planetary-scale effects. Understanding the processes determining the spatial turnover of this assemblage can help us better comprehend the links between microbiome species composition and ecosystem function. Ecological theory predicts thatselection,dispersalanddriftare main drivers of species distributions, yet, the relative quantitative importance of these ecological processes in structuring the surface-ocean microbiome is barely known. Here we quantified the role of selection, dispersal and drift in structuring surface-ocean prokaryotic and picoeukaryotic assemblages by using community DNA-sequence data collected during the global Malaspina expedition. We found that dispersal limitation was the dominant process structuring picoeukaryotic communities, while a balanced combination of dispersal limitation, selection and drift shaped prokaryotic counterparts. Subsequently, we determined the agents exerting abiotic selection as well as the spatial patterns emerging from the action of different ecological processes. We found that selection exerted via temperature had a strong influence on the structure of prokaryotic communities, particularly on species co-occurrences, a pattern not observed among communities of picoeukaryotes. Other measured abiotic variables had limited selective effects on microbiome structure. Picoeukaryotes presented a higher differentiation between neighbouring communities and a higher distance-decay when compared to prokaryotes, agreeing with their higher dispersal limitation. Finally, drift seemed to have a limited role in structuring the sunlit-ocean microbiome. The different predominance of ecological processes acting on particular subsets of the ocean microbiome suggests uneven responses to environmental change.SIGNIFICANCE STATEMENTThe global ocean contains one of the largest microbiomes on Earth and changes on its structure can impact the functioning of the biosphere. Yet, we are far from understanding the mechanisms that structure the global ocean microbiome, that is, the relative importance of environmentalselection,dispersaland random events (drift). We evaluated the role of these processes at the global scale, based on data derived from a circumglobal expedition and found that these ecological processes act differently on prokaryotes and picoeukaryotes, two of the main components of the ocean microbiome. Our work represents a significant contribution to understand the assembly of marine microbial communities, providing also insights on the links between ecological mechanisms, microbiome structure and ecosystem function.


Author(s):  
Zakaria Mohamed

Cyanobacteria are a group of phytoplankton of marine and freshwaters. The accelerated eutrophication of water sources by agricultural and industrial run-off has increased the occurrence and intensity of cyanobacterial blooms. They are of particular concern because of their production for potent hepato-, neuro-, and dermatoxins, being hazardous to human health. Dissemination of knowledge about cyanobacteria and their cyanotoxins assists water supply authorities in developing monitoring and management plans, and provides the public with appropriate information to avoid exposure to these toxins. This chapter provides a broad overview and up-to-date information on cyanobacteria and their toxins in terms of their occurrence, chemical and toxicological characteristics, fate in the environment, guideline limits, and effective treatment techniques to remove these toxins from drinking water. Future research directions were also suggested to fill knowledge and research gaps, and advance the abilities of utilities and water treatment plant designers to deal with these toxins.


2020 ◽  
Vol 71 (11) ◽  
pp. 3296-3304
Author(s):  
Hong Zhou ◽  
Klaus von Schwartzenberg

Abstract The class of conjugating green algae, Zygnematophyceae (Conjugatophyceae), is extremely rich in species and has attracted the interest of phycologists for a long time. It is now widely accepted that this class of charophyte algae holds a key position in the phylogenetic tree of streptophytes, where they represent the closest relatives to all land plants (embryophytes). It is increasingly evident that robust model plants that can be easily cultivated and genetically transformed are necessary to better understand the process of terrestrialization and the related molecular, cellular, and physiological adaptations. Living algae collections play an important role, not only for phylogenomic-based taxonomy but also for screening for suitable model organisms. For this review, we screened six major public algae collections for Zygnematophyceae strains and established a cumulative list comprising 738 different taxa (including species, subspecies, varieties, and forms). From the described biodiversity with 8883 registered taxa (AlgaeBase) the cultured Zygnematophyceae taxa worldwide cover only ~8.3%. We review the past research on this clade of algae and discuss it from the perspective of establishing a model organism. We present data on the life cycle of the genera Micrasterias and Spirogyra, representing the orders Desmidiales and Zygnematales, and outline the current status of genetic transformation of Zygnematophyceae algae and future research perspectives.


Sign in / Sign up

Export Citation Format

Share Document