scholarly journals Pre-trauma memory contextualization as predictor for PTSD-like behavior in male rats

2021 ◽  
Author(s):  
Milou S. C. Sep ◽  
R. Angela Sarabdjitsingh ◽  
Elbert Geuze ◽  
Marian Joels

While many people experience potentially threatening events during their life, only a minority develops posttraumatic stress disorder (PTSD). The identification of individuals at risk among those exposed to trauma is crucial for PTSD prevention in the future. Since re-experiencing trauma elements outside of the original trauma-context is a core feature of PTSD, we investigate if the ability to bind memories to their original encoding context (i.e. memory contextualisation) predicts PTSD vulnerability. We hypothesize that pre-trauma neutral memory contextualization (under stress) negatively relates to PTSD-like behavior, in a prospective design using the cut-off behavioral criteria rat model for PTSD. 72 male Sprague Dawley rats were divided in two experimental groups to assess the predictive value of 1) memory contextualization without acute stress (NS-group) and 2) memory contextualization during the recovery phase of the acute stress-response (S-group) for susceptibility to PTSD-like behavior. A powerful extension to regression analysis -path analysis- was used to test this specific hypothesis, together with secondary research questions. Following traumatic predator scent stress, 19.4% of the rats displayed PTSD-like behavior. Results showed a negative relation between pre-trauma memory contextualization and PTSD-like behavior, but only in the NS-group. Pre-trauma memory contextualization was positively related to fear association in the trauma environment, again only in the NS group. If the predictive value of pre-trauma contextualization of neutral information under non-stressful conditions for PTSD susceptibility is replicated in prospective studies in humans, this factor would supplement already known vulnerability factors for PTSD and improve the identification of individuals at risk among the trauma exposed, especially those at high trauma risk such as soldiers deployed on a mission.

2021 ◽  
Vol 12 ◽  
Author(s):  
Christian Arias-Reyes ◽  
Sofien Laouafa ◽  
Natalia Zubieta-DeUrioste ◽  
Vincent Joseph ◽  
Aida Bairam ◽  
...  

Erythropoietin (EPO) regulates respiration under conditions of normoxia and hypoxia through interaction with the respiratory centers of the brainstem. Here we investigate the dose-dependent impact of EPO in the CB response to hypoxia and hypercapnia. We show, in isolated “en bloc” carotid body (CB) preparations containing the carotid sinus nerve (CSN) from adult male Sprague Dawley rats, that EPO acts as a stimulator of CSN activity in response to hypoxia at concentrations below 0.5 IU/ml. Under hypercapnic conditions, EPO did not influence the CSN response. EPO concentrations above 0.5 IU/ml decreased the response of the CSN to both hypoxia and hypercapnia, reaching complete inhibition at 2 IU/ml. The inhibitory action of high-dose EPO on the CSN activity might result from an increase in nitric oxide (NO) production. Accordingly, CB preparations were incubated with 2 IU/ml EPO and the unspecific NO synthase inhibitor (L-NAME), or the neuronal-specific NO synthase inhibitor (7NI). Both NO inhibitors fully restored the CSN activity in response to hypoxia and hypercapnia in presence of EPO. Our results show that EPO activates the CB response to hypoxia when its concentration does not exceed the threshold at which NO inhibitors masks EPO’s action.


1990 ◽  
Vol 122 (2) ◽  
pp. 168-174 ◽  
Author(s):  
Om P. Sharma ◽  
Shafiq A. Khan ◽  
Gerhard F. Weinbauer ◽  
Mohammed Arslan ◽  
Eberhard Nieschlag

Abstract The effects of androgens on the bioactivity and molecular composition of pituitary FSH were examined in intact and GnRH antagonist-suppressed male rats. Eight groups of adult Sprague-Dawley rats were subjected to the following treatments: antagonist (75 μg/day by osmotic minipumps; sc), testosterone-filled Silastic implants (3×5 cm, sc), dihydrotestosterone-filled Silastic implants (3×5 cm, sc), E2 benzoate (15 μg/day, sc), and combined administration of antagonist with either steroid for 3 weeks. At the end of the treatment period, pituitaries were dissected out and homogenised. FSH content was determined in the pituitary extracts by an in vitro bioassay and a radioimmunoassay. Individual pituitary extracts from rats treated with vehicle, testosterone and testosterone + antagonist were subjected to isoelectric-focusing on sucrose density gradients performed in the pH range from 3.5 to 7.0. Individual isoelectric-focusing fractions (100-120) were analysed for bioactive and immunoreactive FSH. Treatment with antagonist, E2 or antagonist + E2 caused a significant decrease in pituitary FSH, whereas testosterone and dihydrotesterone alone or in combination with antagonist prevented the decrease in pituitary FSH. The effects of all treatments on both bioactive and immunoreactive FSH were similar. Testosterone treatment not only maintained FSH synthesis but also altered the molecular composition of pituitary FSH. Following treatment with testosterone there was a shift of maximal FSH bioactivity to the more acidic pH range. On the other hand, less bioactivity was recovered than corresponding immunoreactivity in the higher pH region, resulting in significantly reduced ratios of bioactivity to immunoreactivity of FSH. No significant differences were found in the isoelectric-focusing profiles or bioactivity to immunoreactivity ratios of pituitary FSH in animals treated with testosterone alone or in combination with antagonist. The results demonstrate that testosterone not only maintained the synthesis of both bioactive and immunoreactive FSH in male rats, but also influences the molecular composition of pituitary FSH. These effects of testosterone on pituitary FSH appear not to be mediated through hypothalamic GnRH.


2018 ◽  
Vol 30 (2) ◽  
pp. 265-273
Author(s):  
Rajiv Balyan ◽  
Ma Cai ◽  
Wenhong Zhao ◽  
Zhao Dai ◽  
Yujia Zhai ◽  
...  

Abstract BackgroundSulfotransferases (SULTs) are phase II drug-metabolizing enzymes. SULTs also regulate the biological activities of biological signaling molecules, such as various hormones, bile acids, and monoamine neurotransmitters; therefore, they play critical roles in the endocrine and nervous systems. People are subject to various kinds of physical, chemical, toxicological, physiological, and psychological stresses at one time or another. The study of the effects produced by stress may lead to finding novel remedies for many disease conditions. The effect of repeated restraint stress on rat SULT expression has not been studied. MethodsThis study involves the effect of repeated restraint stress on SULT1A1 expressions. Male Sprague-Dawley rats (n=4) were subjected to repeated restraint stress 2 h/day for 7 days. Protein and RNA expression of SULT1A1 were analyzed by western blot and quantitative real time reverse transcription polymerase chain reaction, respectively, in important tissues. ResultsWe observed that repeated restraint stress increased the expression of SULT1A1 in the liver, adrenal glands, cerebellum, hypothalamus, and cerebral cortex in male rats. Patterns of enhanced expression were observed at both mRNA and protein level, indicating that repeated restraint stress stimulates enzyme expression at the transcriptional level. ConclusionsChanges of SULT1A1 expression in important tissues caused by repeated restraint stress will have a significant effect on drug metabolism and xenobiotics detoxification. The significant changes in endocrine glands and brain sections may also cause disturbances in hormone homeostasis, therefore leading to disease conditions. This report provides clues for the understanding of the effect of stresses on health.


Author(s):  
Kristiana Nugraheni ◽  
Fadlina Chany Saputri

Objective: This study was conducted to determine the cardioprotective effect of secang extract on the heart cells of rats who suffered from myocardialinfarction induced by isoproterenol.Materials and Methods: Sprague Dawley rats were divided into six groups: Normal control, negative control, control extract (200 mg/kg), and threedifferent dose extract groups (50, 100, and 200 mg/kg body weight) that were given treatment for 30 days, and then, induced with isoproterenol.Observations were made for changes in the macroscopic appearance, cardiac weight, and histology of the cardiac organ.Results: The results showed a decrease in the incidence of myocardial infarction in rats given secang extract. The infarction area decreased withincreasing doses of extract. The weight of the heart in the control extract group was smaller than in the negative control group.Conclusions: Damage to heart cells, seen in the microscope, decreased with increasing doses.


2020 ◽  
Vol 10 (11) ◽  
pp. 829
Author(s):  
Meredith E. Gamble ◽  
Marvin R. Diaz

Adolescent alcohol use can lead to numerous consequences, including altered stress reactivity and higher risk for later anxiety and alcohol use disorders. Many studies have examined the consequences of heavy ethanol exposure in adolescence, but far less is understood about lower levels of intoxication. The present study examined moderate adolescent ethanol exposure as a possible factor in increasing stress reactivity in adulthood, measured through general and social anxiety-like behaviors, as well voluntary ethanol intake. Male and female Sprague–Dawley rats underwent an adolescent chronic intermittent ethanol (aCIE) vapor exposure during early adolescence, reaching moderate blood ethanol concentrations. Animals then underwent two days of forced swim stress in adulthood. We found that ethanol-exposed males consumed more ethanol than their air counterparts and an interesting stress and ethanol exposure interaction in males. There were no significant effects on voluntary drinking in females. However, the social interaction test revealed increased play-fighting behavior in ethanol-exposed females and reduced social preference in females after two days of stress exposure. Overall, this work provides evidence for sex-specific, long-term effects of moderate aCIE and susceptibility to acute stress in adulthood.


1991 ◽  
Vol 260 (2) ◽  
pp. H453-H458 ◽  
Author(s):  
J. N. Stallone ◽  
J. T. Crofton ◽  
L. Share

Previously, we reported that, in the rat, pressor responsiveness to vasopressin (VP) is higher in males than in females during most phases of the estrous cycle. To explore the role of the vasculature in this phenomenon, we examined vascular reactivity to VP in thoracic aortas of male rats and female rats during each phase of the estrous cycle. Aortic rings were prepared from age-matched male and female Sprague-Dawley rats and mounted for isometric tension recording. Maximal response of female aortas to VP (4,246 +/- 163 mg/mg ring dry wt) was more than twice (P less than 0.001) that of male aortas (1,877 +/- 215 mg/mg ring wt). Sensitivity of female aortas to VP was substantially higher (P less than 0.001) than that of male aortas (EC50: 10.9 +/- 0.7 vs. 19.0 +/- 1.6 nM, respectively). Maximal rate of tension development (dT/dtmax) during contraction with VP was nearly twofold higher (P less than 0.01) in female aortas (536 +/- 23 mg/min) than in male aortas (300 +/- 19 mg/min). Maximal response, sensitivity, and dT/dtmax of female aortas did not vary significantly during the estrous cycle. Maximal response of female aortas to phenylephrine (PE; 1,251 +/- 93 mg/mg ring wt) was half that (P less than 0.001) of male aortas (2,546 +/- 194 mg/mg ring wt); sensitivity to PE did not differ significantly (EC50: 0.33 +/- 0.02 vs. 0.38 +/- 0.06 microM, respectively).(ABSTRACT TRUNCATED AT 250 WORDS)


Endocrinology ◽  
2009 ◽  
Vol 150 (5) ◽  
pp. 2308-2316 ◽  
Author(s):  
Deena M. Walker ◽  
Thomas E. Juenger ◽  
Andrea C. Gore

Reproductive function is controlled by GnRH cells and their steroid-sensitive regulatory inputs. The proper maturation of this system is critical to sexual development and maintenance of adult function. However, the molecular mechanisms underlying these developmental changes, and the potential roles of gonadal hormones in sculpting these processes, have not been fully explored. We performed a developmental profile from postnatal day (P) 1 through P60 of a network of five genes in the preoptic area (POA) that are critical to reproduction in male Sprague Dawley rats. GnRH, estrogen receptors-α, and -β, androgen receptor (AR), and progesterone receptor (PR) mRNAs in the POA were assayed, and serum hormones were measured, in developing male rats. We also used a Taqman low-density array to identify candidate genes that may be important in development. Of the five targeted genes, only AR and PR changed robustly (7- and 3- to 4-fold increases, respectively) during development. All of the gonadal serum hormones changed markedly and with very different patterns from their receptor mRNAs: testosterone decreased from P1 to P30 and then increased to P60; progesterone peaked on P30; and estradiol decreased from P1 to P30. Using the Taqman low-density array, we identified several genes that changed dramatically in the POA with development, particularly G protein-coupled receptor 30, IGF-I, vitamin D receptor, estrogen-related receptor-α, and thyroid receptor-α. Our data demonstrate developmental stage-specific changes in neuroendocrine genes, particularly AR and PR. Moreover, the relationships between hormones and their corresponding receptors undergo dynamic changes across development in male rats.


2004 ◽  
Vol 32 (4) ◽  
pp. 371-374 ◽  
Author(s):  
Woo-Chan Son ◽  
Chirukandath Gopinath

It is sometimes difficult to assess the relevance of tumors that occur in treated animals in short-term studies. This report is intended to establish a general profile of tumor occurrence in young control CD-1 mice and Sprague—Dawley rats. Data from 20 rat and 20 mouse carcinogenicity studies conducted between 1990 and 2002 at Huntingdon Life Sciences, UK, were collected and evaluated. The route of administration was either dietary or oral gavage, and the analysis was confined to sporadic deaths (decedents) in control groups occurring during the first 50 weeks of study. In addition, tumor occurrence between 50—80 weeks were compared. In mice, the most common tumor was lymphoma, followed by bronchiolo-alveolar adenoma. In rats, the most common tumor was adenoma of the pituitary gland, followed by mammary fibroadenoma, and adenocarcinoma. When studies of up to 50 weeks, between 50 and 80 weeks, and at 2-year termination were compared, there was no great difference in tumor occurrence except in male rats, in which the most common tumor up to 50 weeks on study was lymphoma, whereas the most common tumor between 50—80 weeks and at 2 years was pituitary adenoma.


2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Abdulsamad Alsalahi ◽  
Mahmood Ameen Abdulla ◽  
Mohammed Al-Mamary ◽  
Mohamed Ibrahim Noordin ◽  
Siddig Ibrahim Abdelwahab ◽  
...  

Hepato- and nephrotoxicity of Khat consumption (Catha edulisForskal) have been evoked. Therefore, this study was conducted to evaluate such possible hepatorenal toxicity in female and male Sprague-Dawley rats (SD rats) focusing primarily on liver and kidney. In addition, female and male rats were investigated separately. Accordingly, forty-eight SD-rats (100–120 g) were distributed randomly into four groups of males and female (n=12). Normal controls (NCs) received distilled water, whereas test groups received 500 mg/kg (low dose (LD)), 1000 mg/kg (medium dose (MD)), or 2000 mg/kg (high dose (HD)) of crude extract ofCatha edulisorally for 4 weeks. Then, physical, biochemical, hematological, and histological parameters were analyzed. Results in Khat-fed rats showed hepatic enlargement, abnormal findings in serum aspartate aminotransferase (AST), and alkaline phosphatase (ALP) of male and female SD-rats and serum albumin (A) and serum creatinine (Cr) of female as compared to controls. In addition, histopathological abnormalities confirmed hepatic and renal toxicities of Khat that were related to heavy Khat consumption. In summary, Khat could be associated with hepatic hypertrophy and hepatotoxicity in male and female SD-rats and nephrotoxicity only in female SD-rats.


Sign in / Sign up

Export Citation Format

Share Document