scholarly journals Role of glutathione on cell adhesion and volume.

2021 ◽  
Author(s):  
Alain Geloen ◽  
Emmanuelle Danty

Glutathione is the most abundant thiol in animal cells. Reduced glutathione (GSH) is a major intracellular antioxidant neutralizing free radicals and detoxifying electrophiles. It plays important roles in many cellular processes, including cell differentiation, proliferation, and apoptosis. In the present study we demonstrate that extracellular concentration of reduced glutathione markedly increases cell volume within few hours, in a dose-response manner. Pre-incubation of cells with BSO, the inhibitor of 7-glutamylcysteine synthetase, responsible for the first step in intracellular glutathione synthesis did not change the effect of reduced glutathione on cell volume suggesting a mechanism limited to the interaction of extracellular reduced glutathione on cell membrane. Results show that reduced GSH decreases cell adhesion resulting in an increased cell volume. Since many cell types are able to transport of GSH out, the present results suggest that this could be a fundamental self-regulation of cell volume, giving the cells a self-control on their adhesion proteins.

Author(s):  
Sarannya Edamana ◽  
Frédéric H. Login ◽  
Soichiro Yamada ◽  
Tae-Hwan Kwon ◽  
Lene N. Nejsum

Aquaporin (AQP) water channels facilitate passive transport of water across cellular membranes following an osmotic gradient. AQPs are expressed in a multitude of epithelia, endothelia, and other cell types where they play important roles in physiology, especially in the regulation of body water homeostasis, skin hydration, and fat metabolism. AQP dysregulation is associated with many pathophysiological conditions, including nephrogenic diabetes insipidus, chronic kidney disease, and congestive heart failure. Moreover, AQPs have emerged as major players in a multitude of cancers where high expression correlates with metastasis and poor prognosis. Besides water transport, AQPs have been shown to be involved in cellular signaling, cell migration, cell proliferation, and in regulation of junctional proteins involved in cell-cell adhesion; all cellular processes which are dysregulated in cancer. This Mini-Review focuses on AQPs as regulators of junctional proteins involved in cell-cell adhesion.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Yi-Chien Lu ◽  
Wen-Chin Weng ◽  
Hsinyu Lee

Calreticulin is a highly conserved endoplasmic reticulum chaperone protein which participates in various cellular processes. It was first identified as a Ca2+-binding protein in 1974. Accumulated evidences indicate that calreticulin has great impacts for the development of different cancers and the effect of calreticulin on tumor formation and progression may depend on cell types and clinical stages. Cell surface calreticulin is considered as an “eat-me” signal and promotes phagocytic uptake of cancer cells by immune system. Moreover, several reports reveal that manipulation of calreticulin levels profoundly affects cancer cell proliferation and angiogenesis as well as differentiation. In addition to immunogenicity and tumorigenesis, interactions between calreticulin and integrins have been described during cell adhesion, which is an essential process for cancer metastasis. Integrins are heterodimeric transmembrane receptors which connect extracellular matrix and intracellular cytoskeleton and trigger inside-out or outside-in signaling transduction. More and more evidences reveal that proteins binding to integrins might affect integrin-cytoskeleton interaction and therefore influence ability of cell adhesion. Here, we reviewed the biological roles of calreticulin and summarized the potential mechanisms of calreticulin in regulating mRNA stability and therefore contributed to cancer metastasis.


2017 ◽  
Vol 28 (14) ◽  
pp. 1819-1824 ◽  
Author(s):  
Fred Chang

One of the major challenges of modern cell biology is to understand how cells are assembled from nanoscale components into micrometer-scale entities with a specific size and shape. Here I describe how our quest to understand the morphogenesis of the fission yeast Schizosaccharomyces pombe drove us to investigate cellular mechanics. These studies build on the view that cell shape arises from the physical properties of an elastic cell wall inflated by internal turgor pressure. Consideration of cellular mechanics provides new insights into not only mechanisms responsible for cell-shape determination and growth, but also cellular processes such as cytokinesis and endocytosis. Studies in yeast can help to illuminate approaches and mechanisms to study the mechanobiology of the cell surface in other cell types, including animal cells.


2017 ◽  
Vol 31 (2) ◽  
pp. 78-89 ◽  
Author(s):  
Asmir Gračanin ◽  
Igor Kardum ◽  
Jasna Hudek-Knežević

Abstract. The neurovisceral integration model proposes that different forms of self-regulation, including the emotional suppression, are characterized by the activation of neural network whose workings are also reflected in respiratory sinus arrhythmia (RSA). However, most of the previous studies failed to observe theoretically expected increases in RSA during emotional suppression. Even when such effects were observed, it was not clear whether they resulted from specific task demands, a decrease in muscle activity, or they were the consequence of more specific self-control processes. We investigated the relation between habitual or trait-like suppression, spontaneous, and instructed suppression with changes in RSA during negative emotion experience. A modest positive correlation between spontaneous situational and habitual suppression was observed across two experimental tasks. Furthermore, the results showed greater RSA increase among participants who experienced higher negative affect (NA) increase and reported higher spontaneous suppression than among those with higher NA increase and lower spontaneous suppression. Importantly, this effect was independent from the habitual suppression and observable facial expressions. The results of the additional task based on experimental manipulation, rather than spontaneous use of situational suppression, indicated a similar relation between suppression and RSA. Our results consistently demonstrate that emotional suppression, especially its self-regulation component, is followed by the increase in parasympathetic activity.


2019 ◽  
Author(s):  
Curtis David Von Gunten ◽  
Bruce D Bartholow ◽  
Jorge S. Martins

Executive functioning (EF) is defined as a set of top-down processes used in reasoning, forming goals, planning, concentrating, and inhibition. It is widely believed that these processes are critical to self-regulation and, therefore, that performance on behavioral task measures of EF should be associated with individual differences in everyday life outcomes. The purpose of the present study was to test this core assumption, focusing on the EF facet of inhibition. A sample of 463 undergraduates completed five laboratory inhibition tasks, along with three self-report measures of self-control and 28 self-report measures of life outcomes. Results showed that although most of the life outcome measures were associated with self-reported self-control, none of the life outcomes were associated with inhibition task performance at the latent-variable level, and few associations were found at the individual task level. These findings challenge the criterion validity of lab-based inhibition tasks. More generally, when considered alongside the known lack of convergent validity between inhibition tasks and self-report measures of self-control, the findings cast doubt on the task’s construct validity as measures of self-control processes. Potential methodological and theoretical reasons for the poor performance of laboratory-based inhibition tasks are discussed.


2021 ◽  
Vol 22 (11) ◽  
pp. 6054
Author(s):  
Ioanna Kokkinopoulou ◽  
Paraskevi Moutsatsou

Mitochondria are membrane organelles present in almost all eukaryotic cells. In addition to their well-known role in energy production, mitochondria regulate central cellular processes, including calcium homeostasis, Reactive Oxygen Species (ROS) generation, cell death, thermogenesis, and biosynthesis of lipids, nucleic acids, and steroid hormones. Glucocorticoids (GCs) regulate the mitochondrially encoded oxidative phosphorylation gene expression and mitochondrial energy metabolism. The identification of Glucocorticoid Response Elements (GREs) in mitochondrial sequences and the detection of Glucocorticoid Receptor (GR) in mitochondria of different cell types gave support to hypothesis that mitochondrial GR directly regulates mitochondrial gene expression. Numerous studies have revealed changes in mitochondrial gene expression alongside with GR import/export in mitochondria, confirming the direct effects of GCs on mitochondrial genome. Further evidence has made clear that mitochondrial GR is involved in mitochondrial function and apoptosis-mediated processes, through interacting or altering the distribution of Bcl2 family members. Even though its exact translocation mechanisms remain unknown, data have shown that GR chaperones (Hsp70/90, Bag-1, FKBP51), the anti-apoptotic protein Bcl-2, the HDAC6- mediated deacetylation and the outer mitochondrial translocation complexes (Tom complexes) co-ordinate GR mitochondrial trafficking. A role of mitochondrial GR in stress and depression as well as in lung and hepatic inflammation has also been demonstrated.


Cells ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 118
Author(s):  
David de Agustín-Durán ◽  
Isabel Mateos-White ◽  
Jaime Fabra-Beser ◽  
Cristina Gil-Sanz

The neocortex is an exquisitely organized structure achieved through complex cellular processes from the generation of neural cells to their integration into cortical circuits after complex migration processes. During this long journey, neural cells need to establish and release adhesive interactions through cell surface receptors known as cell adhesion molecules (CAMs). Several types of CAMs have been described regulating different aspects of neurodevelopment. Whereas some of them mediate interactions with the extracellular matrix, others allow contact with additional cells. In this review, we will focus on the role of two important families of cell–cell adhesion molecules (C-CAMs), classical cadherins and nectins, as well as in their effectors, in the control of fundamental processes related with corticogenesis, with special attention in the cooperative actions among the two families of C-CAMs.


2021 ◽  
Vol 22 (6) ◽  
pp. 3042
Author(s):  
Eun Ju Lee ◽  
Khurshid Ahmad ◽  
Shiva Pathak ◽  
SunJu Lee ◽  
Mohammad Hassan Baig ◽  
...  

In recent years, a major rise in the demand for biotherapeutic drugs has centered on enhancing the quality and efficacy of cell culture and developing new cell culture techniques. Here, we report fibronectin (FN) derived, novel peptides fibronectin-based intergrin binding peptide (FNIN)2 (18-mer) and FNIN3 (20-mer) which promote cell adhesion proliferation, and the differentiation of primary cells and stem cells. FNIN2 and 3 were designed based on the in silico interaction studies between FN and its receptors (integrin α5β1, αvβ3, and αIIbβ3). Analysis of the proliferation of seventeen-cell types showed that the effects of FNINs depend on their concentration and the existence of expressed integrins. Significant rhodamine-labeled FNIN2 fluorescence on the membranes of HeLa, HepG2, A498, and Du145 cells confirmed physical binding. Double coating with FNIN2 or 3 after polymerized dopamine (pDa) or polymerized tannic acid (pTA) precoating increased HBEpIC cell proliferation by 30–40 percent, suggesting FNINs potently affect primary cells. Furthermore, the proliferation of C2C12 myoblasts and human mesenchymal stem cells (MSCs) treated with FNINs was significantly increased in 2D/3D culture. FNINs also promoted MSC differentiation into osteoblasts. The results of this study offer a new approach to the production of core materials (e.g., cell culture medium components, scaffolds) for cell culture.


Sign in / Sign up

Export Citation Format

Share Document