scholarly journals Hippocampal-hypothalamic circuit controls context-dependent innate defensive responses

2021 ◽  
Author(s):  
Jee Yoon Bang ◽  
Julia Sunstrum ◽  
Danielle Garand ◽  
Gustavo Morrone Parfitt ◽  
Melanie Woodin ◽  
...  

Preys use their memory - where they sensed a predatory threat and whether a safe shelter is nearby - to dynamically control their survival instinct to avoid harm and reach safety. However, it remains unknown which brain regions are involved, and how such top-down control of innate behaviour is implemented at the circuit level. Here, we show that the anterior hypothalamic nucleus (AHN) is best positioned to perform this task as an exclusive target of the hippocampus (HPC) within the medial hypothalamic defense system. Selective optogenetic stimulation and inhibition of hippocampal inputs to the AHN revealed that the HPC→AHN pathway not only mediates the contextual memory of predator threats but also controls the goal-directed escape by transmitting information about the surrounding environment. These results reveal a new mechanism for experience-dependent, top-down control of innate defensive behaviours.

Author(s):  
Archana Venkataraman ◽  
Sarah C. Hunter ◽  
Maria Dhinojwala ◽  
Diana Ghebrezadik ◽  
JiDong Guo ◽  
...  

AbstractFear generalization and deficits in extinction learning are debilitating dimensions of Post-Traumatic Stress Disorder (PTSD). Most understanding of the neurobiology underlying these dimensions comes from studies of cortical and limbic brain regions. While thalamic and subthalamic regions have been implicated in modulating fear, the potential for incerto-thalamic pathways to suppress fear generalization and rescue deficits in extinction recall remains unexplored. We first used patch-clamp electrophysiology to examine functional connections between the subthalamic zona incerta and thalamic reuniens (RE). Optogenetic stimulation of GABAergic ZI → RE cell terminals in vitro induced inhibitory post-synaptic currents (IPSCs) in the RE. We then combined high-intensity discriminative auditory fear conditioning with cell-type-specific and projection-specific optogenetics in mice to assess functional roles of GABAergic ZI → RE cell projections in modulating fear generalization and extinction recall. In addition, we used a similar approach to test the possibility of fear generalization and extinction recall being modulated by a smaller subset of GABAergic ZI → RE cells, the A13 dopaminergic cell population. Optogenetic stimulation of GABAergic ZI → RE cell terminals attenuated fear generalization and enhanced extinction recall. In contrast, optogenetic stimulation of dopaminergic ZI → RE cell terminals had no effect on fear generalization but enhanced extinction recall in a dopamine receptor D1-dependent manner. Our findings shed new light on the neuroanatomy and neurochemistry of ZI-located cells that contribute to adaptive fear by increasing the precision and extinction of learned associations. In so doing, these data reveal novel neuroanatomical substrates that could be therapeutically targeted for treatment of PTSD.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yoko Kato ◽  
Harumi Katsumata ◽  
Ayumu Inutsuka ◽  
Akihiro Yamanaka ◽  
Tatsushi Onaka ◽  
...  

AbstractMultiple sequential actions, performed during parental behaviors, are essential elements of reproduction in mammalian species. We showed that neurons expressing melanin concentrating hormone (MCH) in the lateral hypothalamic area (LHA) are more active in rodents of both sexes when exhibiting parental nursing behavior. Genetic ablation of the LHA-MCH neurons impaired maternal nursing. The post-birth survival rate was lower in pups born to female mice with congenitally ablated MCH neurons under control of tet-off system, exhibiting reduced crouching behavior. Virgin female and male mice with ablated MCH neurons were less interested in pups and maternal care. Chemogenetic and optogenetic stimulation of LHA-MCH neurons induced parental nursing in virgin female and male mice. LHA-MCH GABAergic neurons project fibres to the paraventricular hypothalamic nucleus (PVN) neurons. Optogenetic stimulation of PVN induces nursing crouching behavior along with increasing plasma oxytocin levels. The hypothalamic MCH neural relays play important functional roles in parental nursing behavior in female and male mice.


2014 ◽  
Vol 112 (6) ◽  
pp. 1307-1316 ◽  
Author(s):  
Isabel Dombrowe ◽  
Claus C. Hilgetag

The voluntary, top-down allocation of visual spatial attention has been linked to changes in the alpha-band of the electroencephalogram (EEG) signal measured over occipital and parietal lobes. In the present study, we investigated how occipitoparietal alpha-band activity changes when people allocate their attentional resources in a graded fashion across the visual field. We asked participants to either completely shift their attention into one hemifield, to balance their attention equally across the entire visual field, or to attribute more attention to one-half of the visual field than to the other. As expected, we found that alpha-band amplitudes decreased stronger contralaterally than ipsilaterally to the attended side when attention was shifted completely. Alpha-band amplitudes decreased bilaterally when attention was balanced equally across the visual field. However, when participants allocated more attentional resources to one-half of the visual field, this was not reflected in the alpha-band amplitudes, which just decreased bilaterally. We found that the performance of the participants was more strongly reflected in the coherence between frontal and occipitoparietal brain regions. We conclude that low alpha-band amplitudes seem to be necessary for stimulus detection. Furthermore, complete shifts of attention are directly reflected in the lateralization of alpha-band amplitudes. In the present study, a gradual allocation of visual attention across the visual field was only indirectly reflected in the alpha-band activity over occipital and parietal cortexes.


2020 ◽  
Vol 4 (Supplement_1) ◽  
Author(s):  
Bianca S Bono ◽  
Persephone A Miller ◽  
Nikita K Koziel Ly ◽  
Melissa J Chee

Abstract Fibroblast growth factor 21 (FGF21) has emerged as a critical endocrine factor for understanding the neurobiology of obesity, such as by the regulation thermogenesis, food preference, and metabolism, as well as for neuroprotection in Alzheimer’s disease and traumatic brain injury. FGF21 is synthesized primarily by the liver and pancreas then crosses the blood brain barrier to exert its effects in the brain. However, the sites of FGF21 action in the brain is not well-defined. FGF21 action requires the activation of FGF receptor 1c as well as its obligate co-receptor beta klotho (KLB). In order to determine the sites of FGF21 action, we mapped the distribution of Klb mRNA by in situ hybridization using RNAscope technology. We labeled Klb distribution throughout the rostrocaudal axis of male wildtype mice by amplifying Klb hybridization using tyramine signal amplification and visualizing Klb hybridization using Cyanine 3 fluorescence. The resulting Klb signal appears as punctate red “dots,” and each Klb neuron may express low (1–4 dots), medium (5–9 dots), or high levels (10+ dots) of Klb hybridization. We then mapped individual Klb expressing neuron to the atlas plates provided by the Allen Brain Atlas in order to determine Klb distribution within the substructures of each brain region, which are defined by Nissl-based parcellations of cytoarchitectural boundaries. The distribution of Klb mRNA is widespread throughout the brain, and the brain regions analyzed thus far point to notable expression in the hypothalamus, amygdala, hippocampus, and the cerebral cortex. The highest expression of Klb was localized to the suprachiasmatic nucleus in the hypothalamus, which contained low and medium Klb-expressing neurons in the lateral hypothalamic area and ventromedial hypothalamic nucleus while low expressing Klb neurons were seen in the paraventricular and dorsmedial hypothalamic nucleus. Hippocampal Klb expression was limited to the dorsal region and largely restricted to the pyramidal cell layer of the dentate gyrus, CA3, CA2, and CA1 but at low levels only. In the amygdala, low and medium Klb expressing cells were seen in lateral amygdala nucleus while low levels were observed in the basolateral amygdala nucleus. Cortical Klb expression analyzed thus far included low Klb-expressing neurons in the olfactory areas, including layers 2 and 3 of piriform cortex and nucleus of the lateral olfactory tract. These findings are consistent with the known roles of FGF21 in the central regulation of energy balance, but also implicates potentially wide-ranging effects of FGF21 such as in executive functions.


Author(s):  
Jochem van Kempen ◽  
Marc A. Gieselmann ◽  
Michael Boyd ◽  
Nicholas A. Steinmetz ◽  
Tirin Moore ◽  
...  

AbstractSpontaneous fluctuations in cortical excitability influence sensory processing and behavior. These fluctuations, long known to reflect global changes in cortical state, were recently found to be modulated locally within a retinotopic map during spatially selective attention. We found that periods of vigorous (On) and faint (Off) spiking activity, the signature of cortical state fluctuations, were coordinated across brain areas along the visual hierarchy and tightly coupled to their retinotopic alignment. During top-down attention, this interareal coordination was enhanced and progressed along the reverse cortical hierarchy. The extent of local state coordination between areas was predictive of behavioral performance. Our results show that cortical state dynamics are shared across brain regions, modulated by cognitive demands and relevant for behavior.One Sentence SummaryInterareal coordination of local cortical state is retinotopically precise and progresses in a reverse hierarchical manner during selective attention.


2016 ◽  
Vol 115 (2) ◽  
pp. 1043-1062 ◽  
Author(s):  
Arani Roy ◽  
Jason J. Osik ◽  
Neil J. Ritter ◽  
Shen Wang ◽  
James T. Shaw ◽  
...  

Many circuits in the mammalian brain are organized in a topographic or columnar manner. These circuits could be activated—in ways that reveal circuit function or restore function after disease—by an artificial stimulation system that is capable of independently driving local groups of neurons. Here we present a simple custom microscope called ProjectorScope 1 that incorporates off-the-shelf parts and a liquid crystal display (LCD) projector to stimulate surface brain regions that express channelrhodopsin-2 (ChR2). In principle, local optogenetic stimulation of the brain surface with optical projection systems might not produce local activation of a highly interconnected network like the cortex, because of potential stimulation of axons of passage or extended dendritic trees. However, here we demonstrate that the combination of virally mediated ChR2 expression levels and the light intensity of ProjectorScope 1 is capable of producing local spatial activation with a resolution of ∼200–300 μm. We use the system to examine the role of cortical activity in the experience-dependent emergence of motion selectivity in immature ferret visual cortex. We find that optogenetic cortical activation alone—without visual stimulation—is sufficient to produce increases in motion selectivity, suggesting the presence of a sharpening mechanism that does not require precise spatiotemporal activation of the visual system. These results demonstrate that optogenetic stimulation can sculpt the developing brain.


2019 ◽  
Vol 30 (3) ◽  
pp. 875-887
Author(s):  
Kai Hwang ◽  
James M Shine ◽  
Dillan Cellier ◽  
Mark D’Esposito

Abstract Past studies have demonstrated that flexible interactions between brain regions support a wide range of goal-directed behaviors. However, the neural mechanisms that underlie adaptive communication between brain regions are not well understood. In this study, we combined theta-burst transcranial magnetic stimulation (TMS) and functional magnetic resonance imaging to investigate the sources of top-down biasing signals that influence task-evoked functional connectivity. Subjects viewed sequences of images of faces and buildings and were required to detect repetitions (2-back vs. 1-back) of the attended stimuli category (faces or buildings). We found that functional connectivity between ventral temporal cortex and the primary visual cortex (VC) increased during processing of task-relevant stimuli, especially during higher memory loads. Furthermore, the strength of functional connectivity was greater for correct trials. Increases in task-evoked functional connectivity strength were correlated with increases in activity in multiple frontal, parietal, and subcortical (caudate and thalamus) regions. Finally, we found that TMS to superior intraparietal sulcus (IPS), but not to primary somatosensory cortex, decreased task-specific modulation in connectivity patterns between the primary VC and the parahippocampal place area. These findings demonstrate that the human IPS is a source of top-down biasing signals that modulate task-evoked functional connectivity among task-relevant cortical regions.


2020 ◽  
Vol 55 (1) ◽  
pp. 219-246
Author(s):  
Ruwan Bandara ◽  
Mario Fernando ◽  
Shahriar Akter

Purpose The purpose of this study is to examine privacy issues in the e-commerce context from a power-responsibility equilibrium theory (PRE) perspective. Design/methodology/approach The data was collected using an online survey (n = 335) from online shopping consumers. This study used partial least squares-structural equation modeling (PLS-SEM) and fuzzy-set qualitative comparative analysis (fsQCA) techniques to empirically examine the proposed relationships. Findings A lack of corporate privacy responsibility and regulatory protection can deprive consumers of privacy empowerment and damage consumer trust to trigger privacy concerns and subsequent defensive responses. Also, the fsQCA revealed five causal configurations to explain high consumer defensive behaviours. Research limitations/implications This study identifies the importance of PRE theory in the privacy context. Consumer privacy concerns, privacy empowerment and trust are established as strong mediators between corporate/regulatory privacy protection efforts and consumer backlash. The application of fsQCA verified that consumer privacy behaviour can be better explained by different configurations of the same causal antecedents. Practical implications The findings highlight the importance of increasing trust and privacy empowerment as mechanisms to manage privacy concerns and consumer backlash through responsible organisational and regulatory privacy protections. The importance of balancing power and responsibility dynamics for maintaining a healthy information exchange environment is identified. Originality/value This study extends the PRE framework of privacy to include corporate privacy responsibility, privacy empowerment and trust. This is one of the first studies to explore both antecedents and outcomes of privacy empowerment. Also, the application of complexity theory and fsQCA to explain consumers’ defensive responses is novel to the literature.


Author(s):  
David J. Madden ◽  
Zachary A. Monge

Age-related decline occurs in several aspects of fluid, speed-dependent cognition, particularly those related to attention. Empirical research on visual attention has determined that attention-related effects occur across a range of information processing components, including the sensory registration of features, selection of information from working memory, controlling motor responses, and coordinating multiple perceptual and cognitive tasks. Thus, attention is a multifaceted construct that is relevant at virtually all stages of object identification. A fundamental theme of attentional functioning is the interaction between the bottom-up salience of visual features and top-down allocation of processing based on the observer’s goals. An underlying age-related slowing is prominent throughout visual processing stages, which in turn contributes to age-related decline in some aspects of attention, such as the inhibition of irrelevant information and the coordination of multiple tasks. However, some age-related preservation of attentional functioning is also evident, particularly the top-down allocation of attention. Neuroimaging research has identified networks of frontal and parietal brain regions relevant for top-down and bottom-up attentional processing. Disconnection among these networks contributes to an age-related decline in attention, but preservation and perhaps even increased patterns of functional brain activation and connectivity also contribute to preserved attentional functioning.


2015 ◽  
Vol 6 (1) ◽  
Author(s):  
Pengfei Wei ◽  
Nan Liu ◽  
Zhijian Zhang ◽  
Xuemei Liu ◽  
Yongqiang Tang ◽  
...  

Abstract The ability of animals to respond to life-threatening stimuli is essential for survival. Although vision provides one of the major sensory inputs for detecting threats across animal species, the circuitry underlying defensive responses to visual stimuli remains poorly defined. Here, we investigate the circuitry underlying innate defensive behaviours elicited by predator-like visual stimuli in mice. Our results demonstrate that neurons in the superior colliculus (SC) are essential for a variety of acute and persistent defensive responses to overhead looming stimuli. Optogenetic mapping revealed that SC projections to the lateral posterior nucleus (LP) of the thalamus, a non-canonical polymodal sensory relay, are sufficient to mimic visually evoked fear responses. In vivo electrophysiology experiments identified a di-synaptic circuit from SC through LP to the lateral amygdale (Amg), and lesions of the Amg blocked the full range of visually evoked defensive responses. Our results reveal a novel collicular–thalamic–Amg circuit important for innate defensive responses to visual threats.


Sign in / Sign up

Export Citation Format

Share Document