scholarly journals The β-cell primary cilium is an autonomous Ca2+ compartment for paracrine GABA signalling

2021 ◽  
Author(s):  
Gonzalo Sanchez ◽  
Tugce Ceren Incedal ◽  
Juan Prada Salcedo ◽  
Paul O'Callaghan ◽  
Santiago Echeverry ◽  
...  

The primary cilium is an organelle present in most adult mammalian cells and is thought of as an antenna for detection of a variety of signals. Here we use intact mouse pancreatic islets of Langerhans to investigate signalling properties of the primary cilium in β-cells. Using cilia-targeted Ca2+ indicators we find that the resting Ca2+ concentration in the cilium is lower than that of the cytosol, and we uncover a Ca2+ extrusion mechanism in the cilium that effectively insulates the cilium from changes in cytosolic Ca2+. Stimuli that give rise to pronounced cytosolic Ca2+ concentration increases, such as glucose- and depolarization-induced Ca2+ influx, and mobilization of Ca2+ from the ER, was accompanied by minor increases in cilia Ca2+ concentrations that were spatially restricted to a small compartment at the base. Conversely, we observe pronounced Ca2+ concentration changes in the primary cilia of islet β-cells that do not propagate into the cytosol and show that paracrine GABA signalling via cilia-localized GABA- B1-receptors is responsible for this Ca2+ signalling. Finally, we demonstrate that the cilia response to GABA involves ligand-dependent transport of GABA-B1 receptors into the cilium.

2021 ◽  
Author(s):  
Shuwei Xie ◽  
Ellie Smith ◽  
Carter Dierlam ◽  
Danita Mathew ◽  
Angelina Davis ◽  
...  

The mammalian retromer is comprised of subunits VPS26, VPS29 and VPS35, and a more loosely-associated sorting nexin (SNX) heterodimer. Despite known roles for the retromer in multiple trafficking events in yeast and mammalian cells, its role in development is poorly understood, and its potential function in primary ciliogenesis remains unknown. Using CRISPR-Cas9 editing, we demonstrated that vps-26 homozygous knockout C. elegans have reduced brood sizes and impaired vulval development, as well as decreased body length which has been linked to defects in primary ciliogenesis. Since many endocytic proteins are implicated in the generation of primary cilia, we addressed whether the retromer regulates ciliogenesis in mammalian cells. We observed VPS35 localized to the primary cilium, and depletion of VPS26, VPS35 or SNX1/SNX5 led to decreased ciliogenesis. Retromer also coimmunoprecipitated with the capping protein, CP110, and was required for its removal from the mother centriole. Herein, we characterize new roles for the retromer in C. elegans development and in the regulation of ciliogenesis in mammalian cells, and suggest a novel role for the retromer in CP110 removal from the mother centriole.


Author(s):  
Koji Ikegami ◽  
Faryal Ijaz

Abstract Mammalian cells have a tiny hair-like protrusion on their surface called a primary cilium. Primary cilia are thought to be the antennae for the cells, receiving signals from the environment. In some studies, extracellular vesicles (EVs) were found attached to the surface of the primary cilium. An idea for the phenomenon is that the primary cilium is the receptor for receiving the EVs. Meanwhile, a unicellular organism, Chlamydomonas, which has two long cilia, usually called flagella, release EVs termed ectosomes from the surface of the flagella. Accumulating evidence suggests that the primary cilium also functions as the ‘emitter’ of EVs. Physiological and pathological impacts are also elucidated for the release of EVs from primary cilia. However, the roles of released cilia-derived EVs remain to be clarified. This review introduces the historical background of the relationship between EVs and cilia, and recent progresses in the research field.


2020 ◽  
Author(s):  
Yuezhe Li ◽  
Prem. K. Shrestha ◽  
Yi I. Wu

AbstractInsulin receptors (IR) can localize to the primary cilia of pancreatic β cells. Because primary cilia are known to sensitize or bias the signaling of cell surface receptors, we investigate how ciliary insulin receptors influence glucose-stimulated insulin secretion (GSIS) in β cells by gauging how cytosolic calcium concentration changes in a mouse insulinoma cell line (MIN6). Purified recombinant insulin suppresses calcium elevation in response to glucose in these cells. Interestingly, ciliated cells show attenuated cytosolic calcium elevation compared to cilium-free cells after glucose stimulation even in the absence of exogenous insulin. We observe that ciliary IR is highly phosphorylated, and the phospho-IR density decreases when cells are either treated with an insulin receptor (IR) inhibitor, BMS536924, or ciliary function is disrupted through either IFT88 or BBS1 knockdown. Consistently, the attenuation of calcium elevation in ciliated cells is abrogated when cells are either treated with IR inhibitor or when primary cilia are impaired. We further demonstrate that ciliary IR signaling hyperpolarizes the plasma membrane but has no apparent impact on glucose-induced ATP production. Thus, our results argue that primary cilia sensitize insulin receptor signaling and mediate negative feedback in GSIS in pancreatic β cells.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Vijayalakshmi Deivasikamani ◽  
Savitha Dhayalan ◽  
Yilizila Abudushalamu ◽  
Romana Mughal ◽  
Asjad Visnagri ◽  
...  

AbstractGlucose and hypotonicity induced cell swelling stimulate insulin release from pancreatic β-cells but the mechanisms are poorly understood. Recently, Piezo1 was identified as a mechanically-activated nonselective Ca2+ permeable cationic channel in a range of mammalian cells. As cell swelling induced insulin release could be through stimulation of Ca2+ permeable stretch activated channels, we hypothesised a role for Piezo1 in cell swelling induced insulin release. Two rat β-cell lines (INS-1 and BRIN-BD11) and freshly-isolated mouse pancreatic islets were studied. Intracellular Ca2+ measurements were performed using the fura-2 Ca2+ indicator dye and ionic current was recorded by whole cell patch-clamp. Piezo1 agonist Yoda1, a competitive antagonist of Yoda1 (Dooku1) and an inactive analogue of Yoda1 (2e) were used as chemical probes. Piezo1 mRNA and insulin secretion were measured by RT-PCR and ELISA respectively. Piezo1 mRNA was detected in both β-cell lines and mouse islets. Yoda1 evoked Ca2+ entry was inhibited by Yoda1 antagonist Dooku1 as well as other Piezo1 inhibitors gadolinium and ruthenium red, and not mimicked by 2e. Yoda1, but not 2e, stimulated Dooku1-sensitive insulin release from β-cells and pancreatic islets. Hypotonicity and high glucose increased intracellular Ca2+ and enhanced Yoda1 Ca2+ influx responses. Yoda1 and hypotonicity induced insulin release were significantly inhibited by Piezo1 specific siRNA. Pancreatic islets from mice with haploinsufficiency of Piezo1 released less insulin upon exposure to Yoda1. The data show that Piezo1 channel agonist induces insulin release from β-cell lines and mouse pancreatic islets suggesting a role for Piezo1 in cell swelling induced insulin release. Hence Piezo1 agonists have the potential to be used as enhancers of insulin release.


2008 ◽  
Vol 200 (2) ◽  
pp. 127-138 ◽  
Author(s):  
Ana B Ropero ◽  
Pablo Juan-Picó ◽  
Alex Rafacho ◽  
Esther Fuentes ◽  
F Javier Bermúdez-Silva ◽  
...  

PPARα is a ligand-activated transcription factor belonging to the nuclear receptor superfamily. PPARα is involved in the regulation of in vivo triglyceride levels, presumably through its effects on fatty acid and lipoprotein metabolism. Some nuclear receptors have been involved in rapid effects mediated by non-genomic mechanisms. In this paper, we report the rapid non-genomic effects of PPARα ligands on the intracellular calcium concentration ([Ca2+]i), mitochondrial function, reactive oxygen species (ROS) generation, and secretion of insulin in freshly isolated mouse islets of Langerhans. The hypolipidemic fibrate PPARα agonist WY-14 643 decreased the glucose-induced calcium oscillations in intact islets. This effect was mimicked by the synthetic agonist GW7647 and the endogenous agonist oleylethanolamide. The WY-14 643 action was rapid in onset (5 min) and was still produced in the presence of protein and mRNA synthesis inhibitors, cycloheximide, and actinomycin-d. This suggests that it is independent of gene transcription. In addition, WY-14 623 impaired mitochondrial function, increased ROS formation and decreased insulin release. PPARα is present in β-cells, mainly in the cytosol and nucleus, with a small subpopulation localized in the plasma membrane. However, the presence of the PPARα ligand effects in mice bearing a disrupted Pparα gene raises the possibility that the rapid effects of the agonists in pancreatic β-cells are independent of the receptor. We conclude that PPARα agonists produce a decrease in glucose-induced [Ca2+]i signals and insulin secretion in β-cells through a rapid, non-genomic mechanism.


2001 ◽  
Vol 7 (S2) ◽  
pp. 4-5
Author(s):  
H. A. Praetorius ◽  
K. R. Spring

The primary cilium, a solitary non-motile structure projecting from the centriole of mammalian cells, has been a subject of interest of anatomists since 1898. Surprisingly, the function of the primary cilium in mammalian cells is completely unknown. Virtually all of the epithelial cells of the mammalian kidney, with the exception of the intercalated cells of the collecting duct, express a single primary cilium on their apical (lumenal) surface. These structures were ignored by physiologists until recently when the mechanical properties of the primary cilia of cultured cells of renal origin were measured and it was proposed that they could serve as flow sensors. The proposal stemmed from the observation that flow rates comparable to those observed in renal tubules resulted in a deflection of the cilium of a few microns and that the stiffness of the cilium was commensurate with mechanosensing.The primary cilia of renal tubular cells are generally about 2 - 3 μm long whereas those of cultured renal cells become much longer as the cells age and may extend 50 μm or more into the medium. MDCK cells, a cultured cell line derived from the collecting duct of the canine kidney, exhibit two cell types analogous to the principal and intercalated cells of the collecting duct. MDCK principal cells express a primary cilium that is visible by high-resolution DIC microscopy. About one week after splitting, the primary cilium of MDCK principal cells is about 8 μm long and is well suited for testing the hypothesis that the cilium serves as a mechanosensor of fluid flow.


2017 ◽  
Vol 96 (9) ◽  
pp. 965-974 ◽  
Author(s):  
M. Hampl ◽  
P. Cela ◽  
H.L. Szabo-Rogers ◽  
M. Kunova Bosakova ◽  
H. Dosedelova ◽  
...  

Primary cilium is a solitary organelle that emanates from the surface of most postmitotic mammalian cells and serves as a sensory organelle, transmitting the mechanical and chemical cues to the cell. Primary cilia are key coordinators of various signaling pathways during development and maintenance of tissue homeostasis. The emerging evidence implicates primary cilia function in tooth development. Primary cilia are located in the dental epithelium and mesenchyme at early stages of tooth development and later during cell differentiation and production of hard tissues. The cilia are present when interactions between both the epithelium and mesenchyme are required for normal morphogenesis. As the primary cilium coordinates several signaling pathways essential for odontogenesis, ciliary defects can interrupt the latter process. Genetic or experimental alterations of cilia function lead to various developmental defects, including supernumerary or missing teeth, enamel and dentin hypoplasia, or teeth crowding. Moreover, dental phenotypes are observed in ciliopathies, including Bardet-Biedl syndrome, Ellis-van Creveld syndrome, Weyers acrofacial dysostosis, cranioectodermal dysplasia, and oral-facial-digital syndrome, altogether demonstrating that primary cilia play a critical role in regulation of both the early odontogenesis and later differentiation of hard tissue–producing cells. Here, we summarize the current evidence for the localization of primary cilia in dental tissues and the impact of disrupted cilia signaling on tooth development in ciliopathies.


2021 ◽  
Vol 22 (18) ◽  
pp. 9854
Author(s):  
Christine Loo ◽  
Michael Pearen ◽  
Grant Ramm

The Hedgehog (HH) signalling pathway is one of the major pathways controlling cell differentiation and proliferation during human development. This pathway is complex, with HH function influenced by inhibitors, promotors, interactions with other signalling pathways, and non-genetic and cellular factors. Many aspects of this pathway are not yet clarified. The main features of Sonic Hedgehog (SHH) signalling are discussed in relation to its function in human development. The possible role of SHH will be considered using examples of holoprosencephaly and short-rib polydactyly (SRP) syndromes. In these syndromes, there is wide variability in phenotype even with the same genetic mutation, so that other factors must influence the outcome. SHH mutations were the first identified genetic causes of holoprosencephaly, but many other genes and environmental factors can cause malformations in the holoprosencephaly spectrum. Many patients with SRP have genetic defects affecting primary cilia, structures found on most mammalian cells which are thought to be necessary for canonical HH signal transduction. Although SHH signalling is affected in both these genetic conditions, there is little overlap in phenotype. Possible explanations will be canvassed, using data from published human and animal studies. Implications for the understanding of SHH signalling in humans will be discussed.


Author(s):  
Leticia Labat-de-Hoz ◽  
Armando Rubio-Ramos ◽  
Javier Casares-Arias ◽  
Miguel Bernabé-Rubio ◽  
Isabel Correas ◽  
...  

Primary cilia are solitary, microtubule-based protrusions surrounded by a ciliary membrane equipped with selected receptors that orchestrate important signaling pathways that control cell growth, differentiation, development and homeostasis. Depending on the cell type, primary cilium assembly takes place intracellularly or at the cell surface. The intracellular route has been the focus of research on primary cilium biogenesis, whereas the route that occurs at the cell surface, which we call the “alternative” route, has been much less thoroughly characterized. In this review, based on recent experimental evidence, we present a model of primary ciliogenesis by the alternative route in which the remnant of the midbody generated upon cytokinesis acquires compact membranes, that are involved in compartmentalization of biological membranes. The midbody remnant delivers part of those membranes to the centrosome in order to assemble the ciliary membrane, thereby licensing primary cilium formation. The midbody remnant's involvement in primary cilium formation, the regulation of its inheritance by the ESCRT machinery, and the assembly of the ciliary membrane from the membranes originally associated with the remnant are discussed in the context of the literature concerning the ciliary membrane, the emerging roles of the midbody remnant, the regulation of cytokinesis, and the role of membrane compartmentalization. We also present a model of cilium emergence during evolution, and summarize the directions for future research.


Sign in / Sign up

Export Citation Format

Share Document