scholarly journals Ethology of morphogenesis reveals the design principles of cnidarian size and shape development

2021 ◽  
Author(s):  
Anniek Stokkermans ◽  
Aditi Chakrabarti ◽  
Ling Wang ◽  
Prachiti Moghe ◽  
Kaushikaram Subramanian ◽  
...  

SummaryDuring development, organisms interact with their natural habitats while undergoing morphological changes, yet it remains unclear whether the interplay between developing systems and their environments impacts animal morphogenesis. Here, we use the cnidarian Nematostella vectensis as a developmental model to uncover a mechanistic link between organism size, shape and behavior. Using quantitative live imaging, including extensive behavioral profiling, combined with molecular and biophysical experiments, we demonstrate that the muscular hydraulic machinery that controls body movement directly drives larva-polyp morphogenesis. Unexpectedly, size and shape development are differentially controlled by antagonistic muscles. A simple theoretical model shows how a combination of slow-priming and fast-pumping pressures generated by muscular hydraulics acts as a global mechanical regulator that coordinates tissue remodeling. Altogether, our findings illuminate how dynamic behavioral modes in the environment can be harnessed to drive morphogenetic trajectories, establishing ethology as a critical component of organismal morphogenesis – termed ethology of morphogenesis.

2020 ◽  
Author(s):  
Jason Alipio ◽  
Catherine Haga ◽  
Megan E Fox ◽  
Keiko Arakawa ◽  
Rakshita Balaji ◽  
...  

One consequence of the opioid epidemic are lasting neurodevelopmental sequelae afflicting adolescents exposed to opioids in the womb. A translationally relevant and developmentally accurate preclinical model is needed to understand the behavioral, circuit, network, and molecular abnormalities resulting from this exposure. By employing a novel preclinical model of perinatal fentanyl exposure, our data reveal that fentanyl has several dose-dependent, developmental consequences to somatosensory function and behavior. Newborn male and female mice exhibit signs of withdrawal and sensory-related deficits that extend at least to adolescence. As fentanyl exposure does not affect dams' health or maternal behavior, these effects result from the direct actions of perinatal fentanyl on the pups' developing brain. At adolescence, exposed mice exhibit reduced adaptation to sensory stimuli, and a corresponding impairment in primary somatosensory (S1) function. In vitro electrophysiology demonstrates a long-lasting reduction in S1 synaptic excitation, evidenced by decreases in release probability, NMDA receptor-mediated postsynaptic currents, and frequency of miniature excitatory postsynaptic currents, as well as increased frequency of miniature inhibitory postsynaptic currents. In contrast, anterior cingulate cortical neurons exhibit an opposite phenotype, with increased synaptic excitation. Consistent with these changes, electrocorticograms reveal suppressed ketamine-evoked γ oscillations. Morphological analysis of S1 pyramidal neurons indicate reduced dendritic complexity, dendritic length, and soma size. Further, exposed mice exhibited abnormal cortical mRNA expression of key receptors and neuronal growth and development, changes that were consistent with the electrophysiological and morphological changes. These findings demonstrate the lasting sequelae of perinatal fentanyl exposure on sensory processing and function.


2006 ◽  
Vol 23 (3) ◽  
pp. 593-596 ◽  
Author(s):  
Maria L. Felippe-Bauer ◽  
Cristiane S. Silva

Morphological alterations in six different species of females Culicoides Latreille, 1809 and one of Monohelea Kieffer, 1917 from Brazil, Mexico, Panama and Peru are described. The correlation of the morphological changes with the taxonomy and behavior of the species is discussed.


2021 ◽  
pp. 2-25
Author(s):  
Tomás Cabeza de Baca ◽  
Bruce J. Ellis

This chapter highlights parental behavior and household dynamics as one key set of factors that play a vital role in the regulation of development and behavior in children. It shows the benefits of using an evolutionary-developmental model and discusses fundamental points to consider when applying such a model to research. The application of Darwinian principles to domains of parenting and development provides a benefit to researchers by integrating the results of proximate-level research into a unified and interconnected framework. It also reorients within- and between-household differences in parenting as strategies molded by natural selection to maximize survival and reproduction under varied ecological circumstances. The chapter begins with a review of the theoretical foundations of evolutionary developmental psychology, followed by a brief explanation of methodological approaches used by developmentalists. It then looks at current research and future directions.


2019 ◽  
Vol 2019 ◽  
pp. 1-7 ◽  
Author(s):  
Tanawat Chaiphongpachara ◽  
Sedthapong Laojun

Culex sitiens Wiedemann (Diptera, Culicidae) is a mosquito vector that is found in coastal areas. Effective control of mosquitoes requires knowledge of the biology, ecology, and behavior of the vector as well as of various other aspects, including its morphology. Currently, variations in the wing size and shape of coastal Cx. sitiens have not been described. Here, morphological changes were studied in the wings of Cx. sitiens from a coastal area of Samut Songkhram Province, Thailand. Samples were collected at night (6:00 pm–6:00 am) during single weeks of September in the years 2015–2017 using Center for Disease Control light traps with dry ice as bait. Eighteen landmarks of each individual were selected and digitized for landmark-based geometric morphometric analyses. Wing size variability was estimated using the isometric estimator of centroid size. Wing-shape variables were computed as Procrustes superimposition with residual coordinates of the 18 landmarks following a Generalized Procrustes Analysis and the principal components of residual coordinates. Degrees of wing-shape dissimilarity among individuals were analyzed using discriminant analysis or canonical variate analysis, which was illustrated in a discriminant space of canonical variables. Differences in wing size and shape among populations were calculated using nonparametric permutations based on 1000 runs with Bonferroni correction tests at a p-value of <0.05. The wing sizes and shapes of the mosquitoes differed significantly between observation years in all population groups, as indicated by nonparametric tests (1000 runs) with the Bonferroni correction. Differing rainfall between observation years was related to morphological changes in mosquito populations, presumably reflecting environmental adaptation. Differences in the wing morphology of Cx. sitiens between annual populations reflect adaptation to environmental variables such as rainfall and may affect the potential to act as insect vectors of human disease. These observations may facilitate the development of tools for managing mosquito-borne disease.


2009 ◽  
Vol 99 (1) ◽  
pp. 115-119 ◽  
Author(s):  
Gisele P. M. Dantas ◽  
Fabrício R. Santos ◽  
Miguel Ângelo Marini

Unequal sex ratios lead to the loss of genetic variability, decreasing the viability of populations in the long term. Anthropogenic activities often disturb the natural habitats and can cause alterations in sex ratio and morphological characteristics of several species. Forest fragmentation is a major conservation concern, so that understanding its effects in natural populations is essential. In this study, we evaluated the sex ratio and the morphological characteristics of Rufous Gnateaters (Conopophaga lineata (Wied, 1831)) in small and large forest fragments in Minas Gerais, Brazil. Birds (n = 89) were sexed by plumage characteristics and molecular markers. The molecular analysis showed that plumage is not a totally reliable method for sexing Rufous Gnateaters. We observed that sex ratio did not differ between large and small forest fragments, but birds in small fragments had larger wings and tarsus. Wing and tarsus changes may affect the movement ability of individuals within and among forest fragments. In conclusion, Rufous Gnateaters have been able to survive in both small and large Atlantic rain forest fragments without altering their sex ratio, but morphological changes can be prejudicial to their long term survival.


2015 ◽  
Vol 29 (04) ◽  
pp. 1550004
Author(s):  
Raghuvesh Kumar ◽  
Sandhya Bhatt ◽  
Munish Kumar

A simple theoretical model is developed to study the size and shape dependence of Debye temperature and Raman frequency of nanomaterial. We have studied the effect of size and shape on Debye temperature of nanocrystalline Fe , Co , Al and Ag . The model is extended to study the effect of size and shape on the Raman frequency of nanocrystalline SnO 2, CeO 2 and CdSe . The results obtained are compared with the available experimental data. A good agreement between the theory and experimental data supports the validity of the model developed. We also report the results for nanowire and nanofilm in the absence of experimental data, which may help the researchers engaged in the experimental studies.


2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
R. Kumar ◽  
G. Sharma ◽  
M. Kumar

A simple theoretical model is developed to study the size and shape dependence of vibrational and thermodynamic properties of nanomaterials. To show the real connection with the nanomaterials we have studied Debye temperature, Debye frequency, melting entropy, and enthalpy in different shapes, namely, spherical, nanowire, and nanofilm of -Fe, Sn, Ag, and In. The results obtained are compared with the experimental data. A good agreement between the model predictions and the experimental data supports the theory developed in the present paper.


1998 ◽  
Vol 18 (9) ◽  
pp. 5239-5246 ◽  
Author(s):  
Krassen Dimitrov ◽  
Shelley Sazer

ABSTRACT Most microorganisms live in conditions of nutrient limitation in their natural habitats. When exposed to these conditions they respond with physiological and morphological changes that enable them to survive. To obtain insights into the molecular mechanisms of this response a systematic genetic screen was performed to identify genes that when overexpressed can induce a starvation-like response in the yeast species Schizosaccharomyces pombe. One gene that meets these criteria, fnx1 +, induces, transcriptionally correlates with, and is required for the entry into the quiescent G0 state that is normally induced by nitrogen starvation. fnx1 + encodes a protein with sequence similarity to the proton-driven plasma membrane transporters from the multidrug resistance group of the major facilitator superfamily of proteins. We propose that fnx1 +plays a role in the entry into G0, possibly by facilitating the release of a signaling substance into the environment as a means of cell-to-cell communication.


2015 ◽  
Vol 2015 ◽  
pp. 1-13 ◽  
Author(s):  
Sabrina Venditti ◽  
Loredana Verdone ◽  
Caterina Pesce ◽  
Nicoletta Tocci ◽  
Micaela Caserta ◽  
...  

Mind-body practices (MBP) are known to induce electrophysiological and morphological changes, whereas reports related to changes of neurotrophins are surprisingly scarce. Consequently, in the current paper, we focused on the Quadrato motor training (QMT), a newly developed whole-body movement-based MBP, which has been reported to enhance creativity. Here we report the effects of 4 weeks of daily QMT on creativity and proNGF level in two interrelated studies. In Study A, we examined the effects of QMT compared with a walking training (WT) in healthy adults, utilizing the alternate uses task. In contrast with the WT, QMT resulted in increased creativity. In addition, the change in creativity negatively correlated with the change in proNGF levels. In Study B, we examined QMT effects on creativity and additional metacognitive functions in children, using a nonintervention group as control. Similar to Study A, following QMT, we found a negative correlation of proNGF with creativity, as well as working memory updating and planning ability. Together, the current results point to the relationship between increased creativity and decreased proNGF following MBP. Thus, the current research emphasizes the importance of widening the scope of examination of “MBP in motion” in relation to metacognition and well-being.


2021 ◽  
Author(s):  
Jaakko Paasonen ◽  
Petteri Stenroos ◽  
Hanne Laakso ◽  
Tiina Pirttimaki ◽  
Ekaterina Paasonen ◽  
...  

Understanding the link between the brain activity and behavior is a key challenge in modern neuroscience. Behavioral neuroscience, however, lacks tools to record whole-brain activity in complex behavioral settings. Here we demonstrate that a novel Multi-Band SWeep Imaging with Fourier Transformation (MB-SWIFT) functional magnetic resonance imaging (fMRI) approach enables whole-brain studies in spontaneously behaving head-fixed rats. First, we show anatomically relevant functional parcellation. Second, we show sensory, motor, exploration, and stress-related brain activity in relevant networks during corresponding spontaneous behavior. Third, we show odor-induced activation of olfactory system with high correlation between the fMRI and behavioral responses. We conclude that the applied methodology enables novel behavioral study designs in rodents focusing on tasks, cognition, emotions, physical exercise, and social interaction. Importantly, novel zero echo time and large bandwidth approaches, such as MB-SWIFT, can be applied for human behavioral studies, allowing more freedom as body movement is dramatically less restricting factor.


Sign in / Sign up

Export Citation Format

Share Document