scholarly journals Diversification of small RNA pathways underlies germline RNAi incompetence in wild C. elegans strains

2021 ◽  
Author(s):  
Han Ting Chou ◽  
Francisco Valencia ◽  
Jacqueline C. Alexander ◽  
Avery Davis Bell ◽  
Diptodip Deb ◽  
...  

ABSTRACTThe discovery that experimental delivery of dsRNA can induce gene silencing at target genes revolutionized genetics research, by both uncovering essential biological processes and creating new tools for developmental geneticists. However, wild-type C. elegans strains vary dramatically in their response to exogenous RNAi, challenging our characterization of RNAi in the lab relative to its activity and significance in nature. Here, we investigate why some strains fail to mount a robust RNAi response to germline targets. We observe diversity in mechanism: in some strains, the response is stochastic, either on or off among individuals, while in others the response is consistent but delayed. Increased activity of the Argonaute PPW-1, which is required for germline RNAi in the laboratory strain N2, rescues the response in some strains, but dampens it further in others. Across strains, we observe variability in expression of known RNAi genes and strain-specific instances of pseudogenization and allelic divergence. Our results support the conclusions that Argonautes share overlapping functions, that germline RNAi incompetence is strain-specific but likely caused by genetic variants at common genes, and that RNAi pathways are evolving rapidly and dynamically. This work expands our understanding of RNAi by identifying conserved and variable pathway components, and it offers new access into characterizing gene function, identifying pathway interactions, and elucidating the biological significance of RNAi.

2018 ◽  
Author(s):  
Ekaterina Gushchanskaia ◽  
Ruben Esse ◽  
Qicheng Ma ◽  
Nelson Lau ◽  
Alla Grishok

ABSTRACTThe nematode C. elegans contains several types of endogenous small interfering RNAs (endo-siRNAs) produced by RNA-dependent RNA polymerase (RdRP) complexes. Both “silencing” siRNAs bound by Worm-specific Argonautes (WAGO) and “activating” siRNAs bound by the CSR-1 Argonaute require the DRH-3 helicase, an RdRP component. Here we show that, in the drh-3(ne4253) mutant deficient in RdRP-produced secondary endo-siRNAs, the silencing histone mark H3K9me3 is largely depleted, whereas in the csr-1 partial loss-of-function mutant this mark is ectopically deposited on CSR-1 target genes. Moreover, we observe ectopic H3K9me3 at enhancer elements in both drh-3 and csr-1 partial loss-of-function mutants and describe small RNAs matching enhancers. Finally, we detect accumulation of H3K27me3 at highly expressed genes in the drh-3(ne4253) mutant, which correlates with their reduced transcription. Our study shows that when abundant RdRP-produced siRNAs are depleted, there is ectopic elevation of noncoding RNAs linked to increase in silencing chromatin marks. Moreover, our results suggest that enhancer small RNAs may guide local H3K9 methylation.


2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Liling Zeng ◽  
Zhimin Yang ◽  
Tianchan Yun ◽  
Shaoyi Fan ◽  
Zhong Pei ◽  
...  

Abstract Background Jianpi-yangwei (JPYW), a traditional Chinese medicine (TCM), helps to nourish the stomach and spleen and is primarily used to treat functional declines related to aging. This study aimed to explore the antiaging effects and mechanism of JPYW by employing a Caenorhabditis elegans model. Methods Wild-type C. elegans N2 worms were cultured in growth medium with or without JPYW, and lifespan analysis, oxidative and heat stress resistance assays, and other aging-related assays were performed. The effects of JPYW on the levels of superoxide dismutase (SOD) and the expression of specific genes were examined to explore the underlying mechanism of JPYW. Results Compared to control worms, JPYW-treated wild-type worms showed increased survival times under both normal and stress conditions (P < 0.05). JPYW-treated worms also exhibited enhanced reproduction, movement and growth and decreased intestinal lipofuscin accumulation compared to controls (P < 0.05). Furthermore, increased activity of SOD, downregulated expression levels of the proaging gene clk-2 and upregulated expression levels of the antiaging genes daf-16, skn-1, and sir-2.1 were observed in the JPYW group compared to the control group. Conclusion Our findings suggest that JPYW extends the lifespan of C. elegans and exerts antiaging effects by increasing the activity of an antioxidant enzyme (SOD) and by regulating the expression of aging-related genes. This study not only indicates that this Chinese compound exerts antiaging effects by activating and repressing target genes but also provides a proven methodology for studying the biological mechanisms of TCMs.


2019 ◽  
Vol 47 (11) ◽  
pp. 5603-5616 ◽  
Author(s):  
Ekaterina S Gushchanskaia ◽  
Ruben Esse ◽  
Qicheng Ma ◽  
Nelson C Lau ◽  
Alla Grishok

Abstract The nematode Caenorhabditis elegans contains several types of endogenous small interfering RNAs (endo-siRNAs) produced by RNA-dependent RNA polymerase (RdRP) complexes. Both ‘silencing’ siRNAs bound by Worm-specific Argonautes (WAGO) and ‘activating’ siRNAs bound by the CSR-1 Argonaute require the DRH-3 helicase, an RdRP component. Here, we show that, in the drh-3(ne4253) mutant deficient in RdRP-produced secondary endo-siRNAs, the silencing histone mark H3K9me3 is largely depleted, whereas in the csr-1 partially rescued null mutant strain (WM193), this mark is ectopically deposited on CSR-1 target genes. Moreover, we observe ectopic H3K9me3 at enhancer elements and an increased number of small RNAs that match enhancers in both drh-3 and csr-1 mutants. Finally, we detect accumulation of H3K27me3 at highly expressed genes in the drh-3(ne4253) mutant, which correlates with their reduced transcription. Our study shows that when abundant RdRP-produced siRNAs are depleted, there is ectopic elevation of noncoding RNAs linked to sites with increased silencing chromatin marks. Moreover, our results suggest that enhancer small RNAs may guide local H3K9 methylation.


Genetics ◽  
2003 ◽  
Vol 165 (4) ◽  
pp. 1779-1791
Author(s):  
Marc E Colosimo ◽  
Susan Tran ◽  
Piali Sengupta

Abstract Nuclear receptors regulate numerous critical biological processes. The C. elegans genome is predicted to encode ∼270 nuclear receptors of which &gt;250 are unique to nematodes. ODR-7 is the only member of this large divergent family whose functions have been defined genetically. ODR-7 is expressed in the AWA olfactory neurons and specifies AWA sensory identity by promoting the expression of AWA-specific signaling genes and repressing the expression of an AWC-specific olfactory receptor gene. To elucidate the molecular mechanisms of action of a divergent nuclear receptor, we have identified residues and domains required for different aspects of ODR-7 function in vivo. ODR-7 utilizes an unexpected diversity of mechanisms to regulate the expression of different sets of target genes. Moreover, these mechanisms are distinct in normal and heterologous cellular contexts. The odr-7 ortholog in the closely related nematode C. briggsae can fully substitute for all ODR-7-mediated functions, indicating conservation of function across 25–120 million years of divergence.


2002 ◽  
Vol 69 ◽  
pp. 117-134 ◽  
Author(s):  
Stuart M. Haslam ◽  
David Gems ◽  
Howard R. Morris ◽  
Anne Dell

There is no doubt that the immense amount of information that is being generated by the initial sequencing and secondary interrogation of various genomes will change the face of glycobiological research. However, a major area of concern is that detailed structural knowledge of the ultimate products of genes that are identified as being involved in glycoconjugate biosynthesis is still limited. This is illustrated clearly by the nematode worm Caenorhabditis elegans, which was the first multicellular organism to have its entire genome sequenced. To date, only limited structural data on the glycosylated molecules of this organism have been reported. Our laboratory is addressing this problem by performing detailed MS structural characterization of the N-linked glycans of C. elegans; high-mannose structures dominate, with only minor amounts of complex-type structures. Novel, highly fucosylated truncated structures are also present which are difucosylated on the proximal N-acetylglucosamine of the chitobiose core as well as containing unusual Fucα1–2Gal1–2Man as peripheral structures. The implications of these results in terms of the identification of ligands for genomically predicted lectins and potential glycosyltransferases are discussed in this chapter. Current knowledge on the glycomes of other model organisms such as Dictyostelium discoideum, Saccharomyces cerevisiae and Drosophila melanogaster is also discussed briefly.


2016 ◽  
Vol 3 (1) ◽  
Author(s):  
YASIN JESHIMA KHAN ◽  
HUSNARA Tyagi ◽  
Anil kumar Singh ◽  
Santosh kumar. Magadum

Plants respond through a cascade of reactions resulting in varied cellular environment leading to alterations in the patterns of protein expression resulting in phonotypic changes. Single cell genomics and global proteomics came out to be powerful tools and efficient techniques in studying stress tolerant plants. Non-coding RNAs are a distinct class of regulatory RNAs in plants and animals that control a variety of biological processes. Small ncRNAs play a vital role in post transcriptional gene regulation by either translational repression or by inducing mRNA cleavage. The major classes of small RNAs include microRNAs (miRNAs) and small interfering RNAs (siRNAs), which differ in their biogenesis. miRNAs control the expression of cognate target genes by binding to complementary sequences, resulting in cleavage or translational inhibition of the target RNAs. siRNAs too have a similar structure, function, and biogenesis like miRNAs but are derived from long double-stranded RNAs and can often direct DNA methylation at target sequences.In this review, we focus on the involvement of ncRNAs in comabting abiotic stresses of soybean. This review emphasis on previously known miRNAs as they play important role in several abiotic stresses like drought, salinity, chilling and heat stress by their diverse roles in mediating biological processes like gene expression, chromatin formation, defense of genome against invading viruses. This review attempts to elucidate the various kinds of non-coding RNAs explored, their discovery, biogenesis, functions, and response for different type of abiotic stresses and future aspects for crop improvement in the context of soybean, a representative grain legume.


Forests ◽  
2020 ◽  
Vol 11 (4) ◽  
pp. 384
Author(s):  
Baiba Krivmane ◽  
Ilze Šņepste ◽  
Vilnis Šķipars ◽  
Igor Yakovlev ◽  
Carl Gunnar Fossdal ◽  
...  

MicroRNAs (miRNAs) are non-protein coding RNAs of ~20–24 nucleotides in length that play an important role in many biological and metabolic processes, including the regulation of gene expression, plant growth and developmental processes, as well as responses to stress and pathogens. The aim of this study was to identify and characterize novel and conserved microRNAs expressed in methyl jasmonate-treated Scots pine needles. In addition, potential precursor sequences and target genes of the identified miRNAs were determined by alignment to the Pinus unigene set. Potential precursor sequences were identified using the miRAtool, conserved miRNA precursors were also tested for the ability to form the required stem-loop structure, and the minimal folding free energy indexes were calculated. By comparison with miRBase, 4975 annotated sequences were identified and assigned to 173 miRNA groups, belonging to a total of 60 conserved miRNA families. A total of 1029 potential novel miRNAs, grouped into 34 families were found, and 46 predicted precursor sequences were identified. A total of 136 potential target genes targeted by 28 families were identified. The majority of previously reported highly conserved plant miRNAs were identified in this study, as well as some conserved miRNAs previously reported to be monocot specific. No conserved dicot-specific miRNAs were identified. A number of potential gymnosperm or conifer specific miRNAs were found, shared among a range of conifer species.


Genetics ◽  
1997 ◽  
Vol 146 (3) ◽  
pp. 859-869 ◽  
Author(s):  
Patrick J Ferris ◽  
Ursula W Goodenough

Diploid cells of Chlamydomonas reinhardtii that are heterozygous at the mating-type locus (mt  +/mt  –) differentiate as minus gametes, a phenomenon known as minus dominance. We report the cloning and characterization of a gene that is necessary and sufficient to exert this minus dominance over the plus differentiation program. The gene, called mid, is located in the rearranged (R) domain of the mt  – locus, and has duplicated and transposed to an autosome in a laboratory strain. The imp11 mt  – mutant, which differentiates as a fusion-incompetent plus gamete, carries a point mutation in mid. Like the fus1 gene in the mt  + locus, mid displays low codon bias compared with other nuclear genes. The mid sequence carries a putative leucine zipper motif, suggesting that it functions as a transcription factor to switch on the minus program and switch off the plus program of gametic differentiation. This is the first sex-determination gene to be characterized in a green organism.


Sign in / Sign up

Export Citation Format

Share Document