scholarly journals NF-κB-Inducing Kinase Rewires Metabolic Homeostasis and Promotes Diet-Induced Obesity

2021 ◽  
Author(s):  
Kathryn M. Pflug ◽  
Dong W. Lee ◽  
Raquel Sitcheran

AbstractObesity is a predominant risk factor for metabolic syndrome, which refers to a cluster of disorders that include diabetes, cardiovascular disease and fatty liver disease. Obesity and overnutrition are associated with aberrant immune and inflammatory responses resulting in increased local fat deposition, insulin resistance and systemic metabolic dysregulation. Here we show NF-κB-inducing kinase (NIK), a critical regulator of immunity and inflammation has local and systemic effects on metabolic processes. We demonstrate that NIK has NF-κB-independent and -dependent roles on adipose development and function. Independently of noncanonical NF- κB, NIK deficiency regulates mitochondrial spare respiratory capacity (SRC) and proton leak but establishes higher basal oxygen consumption and glycolytic capacity in preadipocytes and ex vivo adipose tissue. In addition, we demonstrate NIK promotes adipogenesis through its role in activation of the noncanonical NF-κB pathway. Strikingly, when challenged with a high fat diet, NIK deficient mice are protected against diet-induced obesity and insulin insensitivity. Overall, mice lacking NIK exhibit decreased overall fat mass and increased energy expenditure. Our results establish that, through its influences on adipose development, metabolic homeostasis and rewiring, NIK is a driver of pathologies associated with metabolic dysfunction.

2021 ◽  
Author(s):  
Qiuhua Yang ◽  
Jiean Xu ◽  
Qian Ma ◽  
Zhiping Liu ◽  
Yaqi Zhou ◽  
...  

Overnutrition-induced endothelial inflammation plays a crucial role in high fat diet (HFD)-induced insulin resistance in animals. Endothelial glycolysis plays a critical role in endothelial inflammation and proliferation, but its role in diet-induced endothelial inflammation and subsequent insulin resistance has not been elucidated. PFKFB3 is a critical glycolytic regulator, and its increased expression has been observed in adipose vascular endothelium of C57BL/6J mice fed with HFD in vivo, and in palmitate (PA)-treated primary human adipose microvascular endothelial cells (HAMECs) in vitro. We generated mice with Pfkfb3 deficiency selective for endothelial cells to examine the effect of endothelial Pfkfb3 in endothelial inflammation in metabolic organs and in the development of HFD-induced insulin resistance. EC Pfkfb3-deficient mice exhibited mitigated HFD-induced insulin resistance, including decreased body weight and fat mass, improved glucose clearance and insulin sensitivity, and alleviated adiposity and hepatic steatosis. Mechanistically, cultured PFKFB3 knockdown HAMECs showed decreased NF-κB activation induced by PA, and consequent suppressed adhesion molecule expression and monocyte adhesion. Taken together, these results demonstrate that increased endothelial PFKFB3 expression promotes diet-induced inflammatory responses and subsequent insulin resistance, suggesting that endothelial metabolic alteration plays an important role in the development of insulin resistance.


2019 ◽  
Vol 12 (2) ◽  
pp. 505-516 ◽  
Author(s):  
Diana C. Castro-Rodríguez ◽  
Luis A. Reyes-Castro ◽  
Claudia C. Vega ◽  
Guadalupe L. Rodríguez-González ◽  
Jorge Yáñez-Fernández ◽  
...  

2007 ◽  
Vol 293 (3) ◽  
pp. L730-L739 ◽  
Author(s):  
Jill R. Johnson ◽  
Filip K. Swirski ◽  
Beata U. Gajewska ◽  
Ryan E. Wiley ◽  
Ramzi Fattouh ◽  
...  

Asthma is a chronic airway inflammatory disease that encompasses three cardinal processes: T helper (Th) cell type 2 (Th2)-polarized inflammation, bronchial hyperreactivity, and airway wall remodeling. However, the link between the immune-inflammatory phenotype and the structural-functional phenotype remains to be fully defined. The objective of these studies was to evaluate the relationship between the immunologic nature of chronic airway inflammation and the development of abnormal airway structure and function in a mouse model of chronic asthma. Using IL-4-competent and IL-4-deficient mice, we created divergent immune-inflammatory responses to chronic aeroallergen challenge. Immune-inflammatory, structural, and physiological parameters of chronic allergic airway disease were evaluated in both strains of mice. Although both strains developed airway inflammation, the profiles of the immune-inflammatory responses were markedly different: IL-4-competent mice elicited a Th2-polarized response and IL-4-deficient mice developed a Th1-polarized response. Importantly, this chronic Th1-polarized immune response was not associated with airway remodeling or bronchial hyperresponsiveness. Transient reconstitution of IL-4 in IL-4-deficient mice via an airway gene transfer approach led to partial Th2 repolarization and increased bronchial hyperresponsiveness, along with full reconstitution of airway remodeling. These data show that distinct structural-functional phenotypes associated with chronic airway inflammation are strictly dependent on the nature of the immune-inflammatory response.


2018 ◽  
Vol 9 (2) ◽  
pp. 1079-1087 ◽  
Author(s):  
Mei Cheng ◽  
Xin Zhang ◽  
Jieyu Zhu ◽  
Lu Cheng ◽  
Jinxuan Cao ◽  
...  

We investigate the modulatory effect of oolong tea polyphenols on the intestinal microbiota in human flora-associated high fat diet induced obese mice.


2017 ◽  
Vol 1 (S1) ◽  
pp. 3-3
Author(s):  
Timothy P. Moran ◽  
Robert M. Immormino ◽  
Hideki Nakano ◽  
David Peden ◽  
Donald N. Cook

OBJECTIVES/SPECIFIC AIMS: Allergic asthma is a chronic lung disease driven by inappropriate inflammatory responses against inhaled allergens. Neuropilin-2 (NRP2) is a pleiotropic transmembrane receptor expressed in the lung, but its role in allergic airway inflammation is unknown. Here, we characterized NRP2 expression in lung immune cells and investigated the effects of NRP2 deficiency on airway inflammation. METHODS/STUDY POPULATION: NRP2 expression by lung immune cells from NRP2 reporter mice was determined by flow cytometry. NRP2 expression by human alveolar macrophages (AM) from healthy individuals was determined by mRNA analysis and flow cytometry. Airway inflammation in NRP2-deficient mice was assessed by bronchoalveolar lavage (BAL) cytology and inflammatory gene expression in lung tissue. RESULTS/ANTICIPATED RESULTS: NRP2 expression in lung immune cells was negligible under steady-state conditions. In contrast, inhalational exposure to lipopolysaccharide (LPS) adjuvant dramatically induced NRP2 expression in AM, as 63.3% of AM from LPS-treated mice were NRP2+ compared with 1.5% of AM from control mice. Ex vivo treatment of human AM with LPS resulted in a 1.5-fold and 2.6-fold increase in NRP2 mRNA and surface protein expression, respectively. Compared to littermate controls, NRP2-deficient mice had greater numbers of BAL leukocytes and increased lung expression of the T helper type 2 cytokines IL-4 and IL-5. Furthermore, NRP2 deficiency resulted in stochastic development of allergic airway inflammation, as spontaneous airway eosinophilia was detected in 25% (2/8) of NRP2-deficient mice compared with 0% (0/8) of littermate controls. DISCUSSION/SIGNIFICANCE OF IMPACT: NRP2 is expressed by activated human and murine AM and suppresses the spontaneous development of allergic airway inflammation. These findings suggest that NRP2 may play a key role in allergic asthma pathogenesis, and could prove to be an important therapeutic target in patients with asthma and other allergic diseases.


2008 ◽  
Vol 294 (6) ◽  
pp. E1051-E1059 ◽  
Author(s):  
Christian Roy ◽  
Sabina Paglialunga ◽  
Alexandre Fisette ◽  
Patrick Schrauwen ◽  
Esther Moonen-Kornips ◽  
...  

ASP-deficient mice (C3 KO) have delayed postprandial TG clearance, are hyperphagic, and display increased energy expenditure. Markers of carbohydrate and fatty acid metabolism in the skeletal muscle and heart were examined to evaluate the mechanism. On a high-fat diet, compared with wild-type mice, C3 KO mice have increased energy expenditure, decreased RQ, lower ex vivo glucose oxidation (−39%, P = 0.018), and higher ex vivo fatty acid oxidation (+68%, P = 0.019). They have lower muscle glycogen content (−25%, P < 0.05) and lower activities for the glycolytic enzymes glycogen phosphorylase (−31%, P = 0.005), hexokinase (−43%, P = 0.007), phosphofructokinase (−51%, P < 0.0001), and GAPDH (−15%, P = 0.04). Analysis of mitochondrial enzyme activities revealed that hydroxyacyl-coenzyme A dehydrogenase was higher (+25%, P = 0.004) in C3 KO mice. Furthermore, Western blot analysis of muscle revealed significantly higher fatty acid transporter CD36 (+40%, P = 0.006) and cytochrome c (a marker of mitochondrial content; +69%, P = 0.034) levels in C3 KO mice, whereas the activity of AMP kinase was lower (−48%, P = 0.003). Overall, these results demonstrate a shift in the metabolic potential of skeletal muscle toward increased fatty acid utilization. Whether this is 1) a consequence of decreased adipose tissue storage with repartitioning toward muscle or 2) a direct result of the absence of ASP interaction with the receptor C5L2 in muscle remains to be determined. However, these in vivo data suggest that ASP inhibition could be a potentially viable approach in correcting muscle metabolic dysfunction in obesity.


2015 ◽  
Vol 290 (21) ◽  
pp. 13250-13262 ◽  
Author(s):  
Kanakadurga Singer ◽  
Nidhi Maley ◽  
Taleen Mergian ◽  
Jennifer DelProposto ◽  
Kae Won Cho ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Monika Słupecka-Ziemilska ◽  
Paulina Grzesiak ◽  
Paweł Kowalczyk ◽  
Piotr Wychowański ◽  
Jarosław Woliński

Maternal health and diet influence metabolic status and play a crucial role in the development of metabolic function in offspring and their susceptibility to metabolic diseases in adulthood. The pathogenesis of various metabolic disorders is often associated with impairment in intestinal structure and function. Thus, the aim of the current study was to determine the effects of maternal exposure to a high fat diet (HFD), during gestation and lactation, on small intestinal growth and maturation in rat pups at 21 days old. Female, Wistar Han rats were fed either a breeding diet (BD) or high fat diet (HFD), from mating until the 21st day of lactation. Maternal HFD exposure increased body weight, BMI and adiposity. Compared to the maternal BD, HFD exposure influenced small intestine histomorphometry in a segment-dependent manner, changed the activity of brush border enzymes and had an impact on intestinal contractility via changes in cholinergic signaling. Moreover, offspring from the maternal HFD group had upregulated mRNA expression of cyclooxygenase (COX)-2, which plays a role in the inflammatory process. These results suggest that maternal HFD exposure, during gestation and lactation, programs the intestinal development of the offspring in a direction toward obesity as observed changes are also commonly reported in models of diet-induced obesity. The results also highlight the importance of maternal diet preferences in the process of developmental programming of metabolic diseases.


Sign in / Sign up

Export Citation Format

Share Document