scholarly journals FIBCD1 is a Conserved Receptor for Chondroitin Sulphate Proteoglycans of the Brain Extracellular Matrix and a Candidate Gene for a Complex Neurodevelopmental Disorder

2021 ◽  
Author(s):  
Christopher W Fell ◽  
Astrid Hagelkruys ◽  
Ana Cicvaric ◽  
Marion Horrer ◽  
Lucy Liu ◽  
...  

ABSTRACTThe brain extracellular matrix (ECM) is enriched in chondroitin sulphate proteoglycans (CSPGs) with variable sulphate modifications that intimately participate in brain maturation and function. Very little is known about how the changing biophysical properties of the CSPGs are signalled to neurons. Here, we report Fibrinogen C Domain Containing 1 (FIBCD1), a known chitin-binding receptor of the innate immune system, to be highly expressed in the hippocampus and to specifically bind CSPGs containing 4-O sulphate modification (CS-4S). Cultured Fibcd1 knockout (KO) neurons lack phenotypic and transcriptomic responses to CSPG stimulation. Further, Fibcd1 KO mice exhibit accumulation of CS-4S, likely resulting in deficits of hippocampal-dependent learning tasks and abrogated synaptic remodelling, a phenotype rescued by enzymatic digestion of CSPGs. Likewise, neuronal specific knockdown of a Fibcd1 orthologue in flies results in neuronal morphological changes at the neuromuscular junctions and behavioural defects. Finally, we report two undiagnosed patients with a complex neurodevelopmental disorder with deleterious variants in FIBCD1, strongly implicating FIBCD1 in the development of the disease. Taken together, our results demonstrate that FIBCD1 is a novel, evolutionarily conserved component of ECM sulphation recognition that is crucial for neuronal development and function.

2008 ◽  
Vol 4 (3) ◽  
pp. 249-257 ◽  
Author(s):  
Renato Frischknecht ◽  
Constanze I. Seidenbecher

Many neurons and their synapses are enwrapped in a brain-specific form of the extracellular matrix (ECM), the so-called perineuronal net (PNN). It forms late in the postnatal development around the time when synaptic contacts are stabilized. It is made of glycoproteins and proteoglycans of glial as well as neuronal origin. The major organizing polysaccharide of brain extracellular space is the polymeric carbohydrate hyaluronic acid (HA). It forms the backbone of a meshwork consisting of CNS proteoglycans such as the lectican family of chondroitin sulphate proteoglycans (CSPG). This family comprises four abundant components of brain ECM: aggrecan and versican as broadly expressed CSPGs and neurocan and brevican as nervous-system-specific family members. In this review, we intend to focus on the specific role of the HA-based ECM in synapse development and function.


2014 ◽  
Vol 9 (2) ◽  
pp. 154-164 ◽  
Author(s):  
Danya Glaser

Purpose – The purpose of this paper is to outline brain structure and development, the relationship between environment and brain development and implications for practice. Design/methodology/approach – The paper is based on a selected review of the literature and clinical experience. Findings – While genetics determine the sequence of brain maturation, the nature of brain development and functioning is determined by the young child's caregiving environment, to which the developing brain constantly adapts. The absence of input during sensitive periods may lead to later reduced functioning. There is an undoubted immediate equivalence between every mind function – emotion, cognition, behaviour and brain activity, although the precise location of this in the brain is only very partially determinable, since brain connections and function are extremely complex. Originality/value – This paper provides an overview of key issues in neurodevelopment relating to the development of young children, and implications for policy and practice.


Development ◽  
1988 ◽  
Vol 103 (Supplement) ◽  
pp. 195-205
Author(s):  
J. B. L. Bard ◽  
M. K. Bansal ◽  
A. S. A. Ross

This paper examines the role of the extracellular matrix (ECM) in the development of the cornea. After a brief summary of the corneal structure and ECM, we describe evidence suggesting that the differentiation of neural crest (NC) cells into endothelium and fibroblasts is under the control of ocular ECM. We then examine the role of collagen I in stromal morphogenesis by comparing normal corneas with those of homozygous Movl3 mice which do not make collagen I. We report that, in spite of this absence, the cellular morphology of the Movl3 eye is indistinguishable from that of the wild type. In the 16-day mutant stroma, however, the remaining collagens form small amounts of disorganized, thin fibrils rather than orthogonally organized 20 nm-diameter fibrils; a result implying that collagen I plays only a structural role and that its absence is not compensated for. It also suggests that, because these remaining collagens will not form the normal fibrils that they will in vitro, fibrillogenesis in the corneal stroma differs from that elsewhere. The latter part of the paper describes our current work on chick stromal deposition using corneal epithelia isolated with an intact basal lamina that lay down in vitro ∼3μm-thick stromas of organized fibrils similar to that seen in vivo. This experimental system has yielded two unexpected results. First, the amount of collagen and proteoglycans produced by such epithelia is not dependent on whether its substratum is collagenous and we therefore conclude that stromal production by the intact epithelium is more autonomous than hitherto thought. Second, chondroitin sulphate (CS), the predominant proteoglycan, appears to play no role in stromal morphogenesis: epithelia cultured in testicular hyaluronidase, which degrades CS, lay down stromas whose organization and fibrildiameter distribution are indistinguishable from controls. One possible role for CS, however, is as a lubricant which facilitates corneal growth: it could allow fibrils to move over one another without deforming their orthogonal organization. Finally, we have examined the processes of fibrillogenesis in the corneal stroma and conclude that they are different from those elsewhere in the embryo and in vitro, perhaps because there is in the primary stroma an unidentified, highly hydrated ECM macromolecule that embeds the fibrils and that may mediate their morphogenesis.


2020 ◽  
Author(s):  
Tal M. Dankovich ◽  
Rahul Kaushik ◽  
Gabriel Cassinelli Petersen ◽  
Philipp Emanuel Giro ◽  
Hannah Abdul Hadi ◽  
...  

SummaryThe brain extracellular matrix (ECM) assembles around neurons and synapses, and is thought to change only rarely, through proteolysis and renewed protein synthesis. We report here an alternative ECM remodeling mechanism, based on the recycling of ECM molecules. We found that a key ECM protein, Tenascin-R, is frequently endocytosed, and later resurfaces, preferentially near synapses. The TNR molecules complete this cycle within ∼3 days, in an activity-dependent fashion.


1995 ◽  
Vol 268 (4) ◽  
pp. H1613-H1620
Author(s):  
C. J. de Groot ◽  
V. A. Chao ◽  
J. M. Roberts ◽  
R. N. Taylor

Human umbilical vein endothelial (HUVE) cells plated on plastic or gelatin-coated dishes grow as a “cobblestone” monolayer. By contrast, endothelial cells cultured on a complex matrix (e.g., Matrigel) form three-dimensional, capillary-like structures. In the current study, we verified the capillary phenotype of the latter structures and asked whether the morphological changes induced by extracellular matrix also affect human endothelial gene expression and function in vitro. Concentrations of cellular fibronectin, prostacyclin, and endothelin-1 were measured in the conditioned media by enzyme-linked immunosorbent and radioimmunoassays. Steady-state concentrations of HUVE mRNA were estimated by reverse transcription-polymerase chain reaction and quantified by Northern analyses to assess fibronectin and endothelin-1 gene expression. We found that the subjacent extracellular matrix affects the morphology, proliferation, and differentiation of HUVE cells in vitro. Cells cultured on gelatin were more mitotically active, expressed significantly less cellular fibronectin, made similar amounts of prostacyclin, and secreted significantly more endothelin-1 compared with the same cells grown on a Matrigel substrate.


2000 ◽  
Vol 7 (4) ◽  
pp. 280-290 ◽  
Author(s):  
Ulrike Novak ◽  
Andrew H. Kaye

2021 ◽  
Vol 11 ◽  
Author(s):  
Alexandra Y. Tsidulko ◽  
Oleg B. Shevelev ◽  
Anna S. Khotskina ◽  
Mariia A. Kolpakova ◽  
Anastasia V. Suhovskih ◽  
...  

Adjuvant chemotherapy with temozolomide (TMZ) is an intrinsic part of glioblastoma multiforme (GBM) therapy targeted to eliminate residual GBM cells. Despite the intensive treatment, a GBM relapse develops in the majority of cases resulting in poor outcome of the disease. Here, we investigated off-target negative effects of the systemic chemotherapy on glycosylated components of the brain extracellular matrix (ECM) and their functional significance. Using an elaborated GBM relapse animal model, we demonstrated that healthy brain tissue resists GBM cell proliferation and invasion, thereby restricting tumor development. TMZ-induced [especially in combination with dexamethasone (DXM)] changes in composition and content of brain ECM proteoglycans (PGs) resulted in the accelerated adhesion, proliferation, and invasion of GBM cells into brain organotypic slices ex vivo and more active growth and invasion of experimental xenograft GBM tumors in SCID mouse brain in vivo. These changes occurred both at core proteins and polysaccharide chain levels, and degradation of chondroitin sulfate (CS) was identified as a key event responsible for the observed functional effects. Collectively, our findings demonstrate that chemotherapy-induced changes in glycosylated components of brain ECM can impact the fate of residual GBM cells and GBM relapse development. ECM-targeted supportive therapy might be a useful strategy to mitigate the negative off-target effects of the adjuvant GBM treatment and increase the relapse-free survival of GBM patients.


2021 ◽  
Vol 35 (S1) ◽  
Author(s):  
Kimberly Alonge ◽  
Aric Logsdon ◽  
Kendra Francis ◽  
Nicole Richardson ◽  
Shannon Hu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document