scholarly journals Proteomic Characterization of Isolated Arabidopsis Clathrin-Coated Vesicles Reveals Evolutionarily Conserved and Plant Specific Components

2021 ◽  
Author(s):  
Dana A. Dahhan ◽  
Gregory D. Reynolds ◽  
Jessica J. Cárdenas ◽  
Dominique Eeckhout ◽  
Alexander Johnson ◽  
...  

In eukaryotes, clathrin-coated vesicles (CCVs) facilitate the internalization of material from the cell surface as well as the movement of cargo in post-Golgi trafficking pathways. This diversity of functions is partially provided by multiple monomeric and multimeric clathrin adaptor complexes that provide compartment and cargo selectivity. The adaptor-protein AP-1 complex operates as part of the secretory pathway at the trans-Golgi network, while the AP-2 complex and the TPLATE complex (TPC) jointly operate at the plasma membrane to execute clathrin-mediated endocytosis. Key to our further understanding of clathrin-mediated trafficking in plants will be the comprehensive identification and characterization of the network of evolutionarily conserved and plant-specific core and accessory machinery involved in the formation and targeting of CCVs. To facilitate these studies, we have analyzed the proteome of enriched trans-Golgi network/early endosome-derived and endocytic CCVs isolated from dividing and expanding suspension-cultured Arabidopsis cells. Tandem mass spectrometry analysis results were validated by differential chemical labeling experiments to identify proteins co-enriching with CCVs. Proteins enriched in CCVs included previously characterized CCV components and cargos such as the vacuolar sorting receptors in addition to conserved and plant-specific components whose function in clathrin-mediated trafficking has not been previously defined. Notably, in addition to AP-1 and AP-2, all subunits of the AP-4 complex, but not AP-3 or AP-5, were found to be in high abundance in the CCV proteome. The association of AP-4 with suspension-cultured Arabidopsis CCVs is further supported via additional biochemical data.

2001 ◽  
Vol 12 (2) ◽  
pp. 475-485 ◽  
Author(s):  
Olivier Deloche ◽  
Bonny G. Yeung ◽  
Gregory S. Payne ◽  
Randy Schekman

A native immunoisolation procedure has been used to investigate the role of clathrin-coated vesicles (CCVs) in the transport of vacuolar proteins between the trans-Golgi network (TGN) and the prevacuolar/endosome compartments in the yeast Saccharomyces cerevisiae. We find that Apl2p, one large subunit of the adaptor protein-1 complex, and Vps10p, the carboxypeptidase Y vacuolar protein receptor, are associated with clathrin molecules. Vps10p packaging in CCVs is reduced in pep12Δ andvps34Δ, two mutants that block Vps10p transport from the TGN to the endosome. However, Vps10p sorting is independent of Apl2p. Interestingly, a Vps10CtΔp mutant lacking its C-terminal cytoplasmic domain, the portion of the receptor responsible for carboxypeptidase Y sorting, is also coimmunoprecipitated with clathrin. Our results suggest that CCVs mediate Vps10p transport from the TGN to the endosome independent of direct interactions between Vps10p and clathrin coats. The Vps10p C-terminal domain appears to play a principal role in retrieval of Vps10p from the prevacuolar compartment rather than in sorting from the TGN.


2005 ◽  
Vol 72 ◽  
pp. 31-38 ◽  
Author(s):  
Rawshan R. Choudhury ◽  
Noora Hyvola ◽  
Martin Lowe

Cargo proteins moving along the secretory pathway are sorted at the TGN (trans-Golgi network) into distinct carriers for delivery to the plasma membrane or endosomes. Recent studies in yeast and mammals have shown that formation of these carriers is regulated by PtdIns(4)P. This phosphoinositide is abundant at the TGN and acts to recruit components required for carrier formation to the membrane. Other phosphoinositides are also present on the TGN, but the extent to which they regulate trafficking is less clear. Further characterization of phosphoinositide kinases and phosphatases together with identification of new TGN-associated phosphoinositide-binding proteins will reveal the extent to which different phosphoinositides regulate TGN trafficking, and help define the molecular mechanisms involved.


1996 ◽  
Vol 109 (12) ◽  
pp. 2811-2821 ◽  
Author(s):  
P.A. Gleeson ◽  
T.J. Anderson ◽  
J.L. Stow ◽  
G. Griffiths ◽  
B.H. Toh ◽  
...  

Transport vesicle formation requires the association of cytosolic proteins with the membrane. We have previously described a brefeldin-A sensitive, hydrophilic protein (p230), containing a very high frequency of heptad repeats, found in the cytosol and associated with Golgi membranes. We show here that p230 is localised on the trans-Golgi network, by immunogold labeling of HeLa cell cryosections using alpha 2,6 sialyltransferase as a compartment-specific marker. The role of G protein activators on the binding of p230 to Golgi membranes and in vesicle biogenesis has been investigated. Treatment of streptolysin-O permeabilised HeLa cells with either GTP gamma S or AlF4- resulted in accumulation of p230 on Golgi membranes. Furthermore, immunolabeling of isolated Golgi membranes treated with AlF4-, to induce the accumulation of vesicles, showed that p230 is predominantly localised to the cytoplasmic surface of trans-Golgi network-derived budding structures and small coated vesicles. p230-labeled vesicles have a thin (approximately 10 nm) electron dense cytoplasmic coat and could be readily distinguished from clathrin-coated vesicles. Dual immunogold labeling of perforated cells, or of cryosections of treated Golgi membranes, revealed that p230 and the trans-Golgi network-associated p200, which we show here to be distinct molecules, appear to be localised on separate populations of vesicles budding from the trans-Golgi network. These results strongly suggest the presence of distinct populations of non-clathrin coated vesicles derived from the trans-Golgi network. As p230 recycles between the cytosol and buds/vesicles of TGN membranes, a process regulated by G proteins, we propose that p230 is involved in the biogenesis of a specific population of non-clathrin coated vesicles.


1998 ◽  
Vol 9 (8) ◽  
pp. 2217-2229 ◽  
Author(s):  
Lisa A. Hannan ◽  
Sherri L. Newmyer ◽  
Sandra L. Schmid

Clathrin-coated vesicles (CCV) mediate protein sorting and vesicular trafficking from the plasma membrane and the trans-Golgi network. Before delivery of the vesicle contents to the target organelles, the coat components, clathrin and adaptor protein complexes (APs), must be released. Previous work has established that hsc70/the uncoating ATPase mediates clathrin release in vitro without the release of APs. AP release has not been reconstituted in vitro, and nothing is known about the requirements for this reaction. We report a novel quantitative assay for the ATP- and cytosol- dependent release of APs from CCV. As expected, hsc70 is not sufficient for AP release; however, immunodepletion and reconstitution experiments establish that it is necessary. Interestingly, complete clathrin release is not a prerequisite for AP release, suggesting that hsc70 plays a dual role in recycling the constituents of the clathrin coat. This assay provides a functional basis for identification of the additional cytosolic factor(s) required for AP release.


1993 ◽  
Vol 106 (3) ◽  
pp. 815-822
Author(s):  
N.J. Bryant ◽  
A. Boyd

One of the Golgi compartments of Saccharomyces cerevisiae is defined by the presence of a specific endoproteinase, Kex2p, which cleaves precursor polypeptides at pairs of basic residues. We have used antibodies directed against the cytoplasmically disposed C-terminal domain of Kex2p to develop an immuno-affinity procedure for the isolation of Kex2p-containing organelles. The method gives a high yield of sealed organelles that are essentially free of contamination from other secretory pathway organelles while being significantly enriched for two other late Golgi enzymes, dipeptidylaminopeptidase A and the Kex1 carboxypeptidase. Our findings provide clear evidence for a single yeast Golgi compartment containing all three late-processing enzymes, which is likely to be the functional equivalent in yeast of the mammalian trans-Golgi network.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Katarzyna Kozłowicz ◽  
Renata Różyło ◽  
Bożena Gładyszewska ◽  
Arkadiusz Matwijczuk ◽  
Grzegorz Gładyszewski ◽  
...  

Abstract This work aimed at the chemical and structural characterization of powders obtained from chestnut flower honey (HFCh) and honey with Inca berry (HBlu). Honey powders were obtained by spray drying technique at low temperature (80/50 °C) with dehumidified air. Maltodextrin (DE 15) was used as a covering agent. The isolation and evaluation of phenolic compounds and sugars were done by gas chromatography–mass spectrometry analysis. Scanning electron microscopy, Fourier-transform infrared (FTIR) spectroscopy, and X-ray diffraction were performed to determine the morphology of the studied honey powders. The obtained results showed that the content of simple sugars amounted to 72.4 and 90.2 g × 100 g−1 in HFCh and HBlu, respectively. Glucose was found to be the dominant sugar with a concentration of 41.3 and 51.6 g × 100 g−1 in HFCh and HBlu, respectively. 3-Phenyllactic acid and ferulic acid were most frequently found in HFCh powder, whereas m-coumaric acid, benzoic acid, and cinnamic acid were the most common in HBlu powder. The largest changes in the FTIR spectra occurred in the following range of wavenumbers: 3335, 1640, and below 930 cm−1. The X-ray diffraction profiles revealed wide peaks, suggesting that both honey powders are amorphous and are characterized by a short-range order only.


2012 ◽  
Vol 58 (8) ◽  
pp. 1027-1034 ◽  
Author(s):  
Chrystal L. Berry ◽  
Ann Karen C. Brassinga ◽  
Lynda J. Donald ◽  
W.G. Dilantha Fernando ◽  
Peter C. Loewen ◽  
...  

Pseudomonas sp. strain DF41 produces a lipopeptide, called sclerosin that inhibits the fungal pathogen Sclerotinia sclerotiorum . The aim of the current study was to deduce the chemical structure of this lipopeptide and further characterize its bioactivity. Mass spectrometry analysis determined the structure of sclerosin to be CH3-(CH2)6-CH(OH)-CH2-CO-Dhb-Pro-Ala-Leu/Ile-Ala-Val-Val-Dhb-Thr-Val-Leu/Ile-Dhp-Ala-Ala-Ala-Val-Dhb-Dhb-Ala-Dab-Ser-Val-OH, similar to corpeptins A and B of the tolaasin group, differing by only 3 amino acids in the peptide chain. Subjecting sclerosin to various ring opening procedures revealed no new ions, suggesting that this molecule is linear. As such, sclerosin represents a new member of the tolaasin lipopeptide group. Incubation of S. sclerotinia ascospores and sclerotia in the presence of sclerosin inhibited the germination of both cell types. Sclerosin also exhibited antimicrobial activity against Bacillus species. Conversely, this lipopeptide demonstrated no zoosporicidal activity against the oomycete pathogen Phytophthora infestans . Next, we assessed the effect of DF41 and a lipopeptide-deficient mutant on the growth and development of Caenorhabditis elegans larvae. We discovered that sclerosin did not protect DF41 from ingestion by and degradation in the C. elegans digestive tract. However, another metabolite produced by this bacterium appeared to shorten the life-span of the nematode compared to C. elegans growing on Escherichia coli OP50.


Sign in / Sign up

Export Citation Format

Share Document