scholarly journals Legionella pneumophila modulates host energy metabolism by ADP-ribosylation of ADP/ATP translocases

2021 ◽  
Author(s):  
Jiaqi Fu ◽  
Mowei Zhou ◽  
Marina A Gritsenko ◽  
Ernesto S. Nakayasu ◽  
Lei Song ◽  
...  

The intracellular pathogen Legionella pneumophila delivers more than 330 effectors into host cells by its Dot/Icm secretion system. Those effectors direct the biogenesis of the Legionella-containing vacuole (LCV) that permits its intracellular survival and replication. It has long been documented that the LCV is associated with mitochondria and a number of Dot/Icm effectors have been shown to target to this organelle. Yet, the biochemical function and host cell target of most of these effectors remain unknown. Here, we found that the Dot/Icm substrate Ceg3 (Lpg0080) is a mono-ADP-ribosyltransferase that localizes to the mitochondria in host cells where it attacks ADP/ATP translocases by ADP-ribosylation, and blunts their ADP/ATP exchange activity. The modification occurs on the second arginine residue in the -RRRMMM- element, which is conserved among all known ADP/ATP carriers from different organisms. Our results reveal modulation of host energy metabolism as a virulence mechanism for L. pneumophila.

2018 ◽  
Author(s):  
Debnath Ghosal ◽  
Yi-Wei Chang ◽  
Kwang Cheol Jeong ◽  
Joseph P. Vogel ◽  
Grant J. Jensen

AbstractLegionella pneumophilasurvives and replicates inside host cells by secreting ~300 effectors through the Dot/Icm type IVB secretion system (T4BSS). Understanding this machine’s structure is challenging because of its large number of components (27) and integration into all layers of the cell envelope. Previously we overcame this obstacle by imaging the Dot/Icm T4BSS in its native state within intact cells through electron cryotomography. Here we extend our observations by imaging a stabilized mutant that yielded a higher resolution map. We describe for the first time the presence of a well-ordered central channel that opens up into a windowed large (~32 nm wide) secretion chamber with an unusual 13-fold symmetry. We then dissect the complex by matching proteins to densities for many components, including all those with periplasmic domains. The placement of known and predicted structures of individual proteins into the map reveals the architecture of the T4BSS and provides a roadmap for further investigation of this amazing specialized secretion system.


2001 ◽  
Vol 69 (1) ◽  
pp. 508-517 ◽  
Author(s):  
Suat L. G. Cirillo ◽  
Luiz E. Bermudez ◽  
Sahar H. El-Etr ◽  
Gerald E. Duhamel ◽  
Jeffrey D. Cirillo

ABSTRACT Successful parasitism of host cells by intracellular pathogens involves adherence, entry, survival, intracellular replication, and cell-to-cell spread. Our laboratory has been examining the role of early events, adherence and entry, in the pathogenesis of the facultative intracellular pathogen Legionella pneumophila. Currently, the mechanisms used by L. pneumophila to gain access to the intracellular environment are not well understood. We have recently isolated three loci, designated enh1,enh2, and enh3, that are involved in the ability of L. pneumophila to enter host cells. One of the genes present in the enh1 locus, rtxA, is homologous to repeats in structural toxin genes (RTX) found in many bacterial pathogens. RTX proteins from other bacterial species are commonly cytotoxic, and some of them have been shown to bind to β2 integrin receptors. In the current study, we demonstrate that the L. pneumophila rtxA gene is involved in adherence, cytotoxicity, and pore formation in addition to its role in entry. Furthermore, an rtxA mutant does not replicate as well as wild-type L. pneumophila in monocytes and is less virulent in mice. Thus, we conclude that the entry genertxA is an important virulence determinant in L. pneumophila and is likely to be critical for the production of Legionnaires' disease in humans.


2018 ◽  
Author(s):  
KwangCheol C. Jeong ◽  
Jacob Gyore ◽  
Lin Teng ◽  
Debnath Ghosal ◽  
Grant J. Jensen ◽  
...  

SummaryLegionella pneumophila, the causative agent of Legionnaires’ disease, survives and replicates inside amoebae and macrophages by injecting a large number of protein effectors into the host cells’ cytoplasm via the Dot/Icm type IVB secretion system (T4BSS). Previously, we showed that the Dot/Icm T4BSS is localized to both poles of the bacterium and that polar secretion is necessary for the proper targeting of theLegionellacontaining vacuole (LCV). Here we show that polar targeting of the Dot/Icm core-transmembrane subcomplex (DotC, DotD, DotF, DotG and DotH) is mediated by two Dot/Icm proteins, DotU and IcmF, which are able to localize to the poles ofL. pneumophilaby themselves. Interestingly, DotU and IcmF are homologs of the T6SS components TssL and TssM, which are part of the T6SS membrane complex (MC). We propose thatLegionellaco-opted these T6SS components to a novel function that mediates subcellular localization and assembly of this T4SS. Finally, in depth examination of the biogenesis pathway revealed that polar targeting and assembly of theLegionellaT4BSS apparatus is mediated by an innovative “outside-inside” mechanism.


2019 ◽  
Vol 201 (23) ◽  
Author(s):  
Charles L. Larson ◽  
Paul A. Beare ◽  
Robert A. Heinzen

ABSTRACT Macrophage parasitism by Coxiella burnetii, the cause of human Q fever, requires the translocation of proteins with effector functions directly into the host cell cytosol via a Dot/Icm type 4B secretion system (T4BSS). Secretion by the analogous Legionella pneumophila T4BSS involves signal sequences within the C-terminal and internal domains of effector proteins. The cytoplasmic chaperone pair IcmSW promotes secretion and binds internal sites distinct from signal sequences. In the present study, we investigated requirements of C. burnetii IcmS for host cell parasitism and effector translocation. A C. burnetii icmS deletion mutant (ΔicmS) exhibited impaired replication in Vero epithelial cells, deficient formation of the Coxiella-containing vacuole, and aberrant T4BSS secretion. Three secretion phenotypes were identified from a screen of 50 Dot/Icm substrates: IcmS dependent (secreted by only wild-type bacteria), IcmS independent (secreted by both wild-type and ΔicmS bacteria), or IcmS inhibited (secreted by only ΔicmS bacteria). Secretion was assessed for N-terminal or C-terminal truncated forms of CBU0794 and CBU1525. IcmS-inhibited secretion of CBU1525 required a C-terminal secretion signal whereas IcmS-dependent secretion of CBU0794 was directed by C-terminal and internal signals. Interchange of the C-terminal 50 amino acids of CBU0794 and CBU1525 revealed that sites within the C terminus regulate IcmS dependency. Glutathione S-transferase-tagged IcmSW bound internal sequences of IcmS-dependent and -inhibited substrates. Thus, the growth defect of the C. burnetii ΔicmS strain is associated with a loss of T4BSS chaperone activity that both positively and negatively regulates effector translocation. IMPORTANCE The intracellular pathogen Coxiella burnetii employs a type 4B secretion system (T4BSS) that promotes growth by translocating effectors of eukaryotic pathways into host cells. T4BSS regulation modeled in Legionella pneumophila indicates IcmS facilitates effector translocation. Here, we characterized type 4B secretion by a Coxiella ΔicmS mutant that exhibits intracellular growth defects. T4BSS substrates demonstrated increased, equivalent, or decreased secretion by the ΔicmS mutant relative to wild-type Coxiella. Similar to the Legionella T4BSS, IcmS dependency in Coxiella was determined by C-terminal and/or internal secretion signals. However, IcmS inhibited secretion of some effectors by Coxiella that were previously shown to be translocated by Legionella. Thus, Coxiella has a unique IcmS regulatory mechanism that both positively and negatively regulates T4BSS export.


mBio ◽  
2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Marika Linsky ◽  
Yevgeniya Vitkin ◽  
Gil Segal

ABSTRACT The intracellular pathogen Legionella pneumophila utilizes the Icm/Dot type IV secretion system to translocate >300 effector proteins into host cells during infection. The regulation of some of these effector-encoding genes was previously shown to be coordinated by several global regulators, including three two-component systems (TCSs) found in all the Legionella species examined. Here, we describe the first Legionella genomic island encoding a single Icm/Dot effector and a dedicated TCS, which regulates its expression. This genomic island, which we named Lci, undergoes horizontal gene transfer in the Legionella genus, and the TCS encoded from this island (LciRS) is homologous to TCSs that control the expression of various metal resistance systems found in other bacteria. We found that the L. pneumophila sensor histidine kinase LciS is specifically activated by copper via a unique, small periplasmic sensing domain. Upon activation by LciS, the response regulator LciR directly binds to a conserved regulatory element and activates the expression of the adjacently located lciE effector-encoding gene. Thus, LciR represents the first local regulator of effectors identified in L. pneumophila. Moreover, we found that the expression of the lciRS operon is repressed by the Fis1 and Fis3 regulators, leading to Fis-mediated effects on copper induction of LciE and silencing of the expression of this genomic island in the absence of copper. This island represents a novel type of effector regulation in Legionella, shedding new light on the ways by which the Legionella pathogenesis system evolves its effector repertoire and expands its activating signals. IMPORTANCE Legionella pneumophila is an intracellular human pathogen that utilizes amoebae as its environmental host. The adaptation of L. pneumophila to the intracellular environment requires coordination of expression of its multicomponent pathogenesis system, which is composed of a secretion system and effector proteins. However, the regulatory factors controlling the expression of this pathogenesis system are only partially uncovered. Here, we discovered a novel regulatory system that is activated by copper and controls the expression of a single effector protein. The genes encoding both the regulatory system and the effector protein are located on a genomic island that undergoes horizontal gene transfer within the Legionella genus. This regulator-effector genomic island represents the first reported case of local regulation of effectors in Legionella. The discovery of this regulatory mechanism is an important step forward in the understanding of how the regulatory network of effectors functions and evolves in the Legionella genus.


2014 ◽  
Vol 197 (3) ◽  
pp. 563-571 ◽  
Author(s):  
Fabien Fuche ◽  
Anne Vianney ◽  
Claire Andrea ◽  
Patricia Doublet ◽  
Christophe Gilbert

Legionella pneumophilais a Gram-negative pathogen found mainly in water, either in a free-living form or within infected protozoans, where it replicates. This bacterium can also infect humans by inhalation of contaminated aerosols, causing a severe form of pneumonia called legionellosis or Legionnaires' disease. The involvement of type II and IV secretion systems in the virulence ofL. pneumophilais now well documented. Despite bioinformatic studies showing that a type I secretion system (T1SS) could be present in this pathogen, the functionality of this system based on the LssB, LssD, and TolC proteins has never been established. Here, we report the demonstration of the functionality of the T1SS, as well as its role in the infectious cycle ofL. pneumophila. Using deletion mutants and fusion proteins, we demonstrated that therepeats-in-toxin protein RtxA is secreted through an LssB-LssD-TolC-dependent mechanism. Moreover, fluorescence monitoring and confocal microscopy showed that this T1SS is required for entry into the host cell, although it seems dispensable to the intracellular cycle. Together, these results underline the active participation ofL. pneumophila, via its T1SS, in its internalization into host cells.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Loh Teng Hern Tan ◽  
Wei Yu Tee ◽  
Tahir Mehmood Khan ◽  
Long Chiau Ming ◽  
Vengadesh Letchumanan

Over the years, Legionella pneumophila has increasingly become a public health threat that causes sporadic and epidemic community-acquired and nosocomial-acquired pneumonia. Thus, this review aims to discuss the current knowledge of L. pneumophila, focusing on the global epidemiology, clinical features, diagnosis and treatment of Legionnaires’ disease (LD). Legionella bacteria are Gram-negative rod-shaped bacteria that are ubiquitous in aquatic environments. L. pneumophila was first discovered in 1976 and recognized as the causative agent of LD. L. pneumophila is a facultative intracellular pathogen that infects and replicates within eukaryotic host cells such as macrophages and protozoan. Diagnosis of LD remains a significant challenge as the clinical manifestation of LD is hardly distinguishable from pneumonia caused by other respiratory pathogens. Therefore, early testing and appropriate treatment are keys to alleviating the rising morbidity and mortality caused by LD.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Clarissa L Durie ◽  
Michael J Sheedlo ◽  
Jeong Min Chung ◽  
Brenda G Byrne ◽  
Min Su ◽  
...  

Legionella pneumophila is an opportunistic pathogen that causes the potentially fatal pneumonia Legionnaires’ Disease. This infection and subsequent pathology require the Dot/Icm Type IV Secretion System (T4SS) to deliver effector proteins into host cells. Compared to prototypical T4SSs, the Dot/Icm assembly is much larger, containing ~27 different components including a core complex reported to be composed of five proteins: DotC, DotD, DotF, DotG, and DotH. Using single particle cryo-electron microscopy (cryo-EM), we report reconstructions of the core complex of the Dot/Icm T4SS that includes a symmetry mismatch between distinct structural features of the outer membrane cap (OMC) and periplasmic ring (PR). We present models of known core complex proteins, DotC, DotD, and DotH, and two structurally similar proteins within the core complex, DotK and Lpg0657. This analysis reveals the stoichiometry and contact interfaces between the key proteins of the Dot/Icm T4SS core complex and provides a framework for understanding a complex molecular machine.


2019 ◽  
Vol 21 (5) ◽  
pp. 1825-1836 ◽  
Author(s):  
Jiajun Hong ◽  
Yongchao Luo ◽  
Minjie Mou ◽  
Jianbo Fu ◽  
Yang Zhang ◽  
...  

Abstract The type IV bacterial secretion system (SS) is reported to be one of the most ubiquitous SSs in nature and can induce serious conditions by secreting type IV SS effectors (T4SEs) into the host cells. Recent studies mainly focus on annotating new T4SE from the huge amount of sequencing data, and various computational tools are therefore developed to accelerate T4SE annotation. However, these tools are reported as heavily dependent on the selected methods and their annotation performance need to be further enhanced. Herein, a convolution neural network (CNN) technique was used to annotate T4SEs by integrating multiple protein encoding strategies. First, the annotation accuracies of nine encoding strategies integrated with CNN were assessed and compared with that of the popular T4SE annotation tools based on independent benchmark. Second, false discovery rates of various models were systematically evaluated by (1) scanning the genome of Legionella pneumophila subsp. ATCC 33152 and (2) predicting the real-world non-T4SEs validated using published experiments. Based on the above analyses, the encoding strategies, (a) position-specific scoring matrix (PSSM), (b) protein secondary structure & solvent accessibility (PSSSA) and (c) one-hot encoding scheme (Onehot), were identified as well-performing when integrated with CNN. Finally, a novel strategy that collectively considers the three well-performing models (CNN-PSSM, CNN-PSSSA and CNN-Onehot) was proposed, and a new tool (CNN-T4SE, https://idrblab.org/cnnt4se/) was constructed to facilitate T4SE annotation. All in all, this study conducted a comprehensive analysis on the performance of a collection of encoding strategies when integrated with CNN, which could facilitate the suppression of T4SS in infection and limit the spread of antimicrobial resistance.


2018 ◽  
Vol 64 (12) ◽  
pp. 1030-1041 ◽  
Author(s):  
Nilmini Mendis ◽  
Hana Trigui ◽  
Mariam Saad ◽  
Adrianna Tsang ◽  
Sébastien P. Faucher

The intracellular pathogen Legionella pneumophila (Lp) is a strict aerobe, surviving and replicating in environments where it frequently encounters reactive oxygen species (ROS), such as the nutrient-poor water environment and its replicative niche inside host cells. In many proteobacteria, the LysR-type regulator OxyR controls the oxidative stress response; however, the importance of the OxyR homologue in Lp is still unclear. Therefore, we undertook the characterization of phenotypes associated with the deletion of oxyR in Lp. Contrary to the wild type, the oxyR deletion mutant exhibits a severe growth defect on charcoal – yeast extract (CYE) agar lacking α-ketoglutarate supplementation. Growth in AYE broth (CYE without agar and charcoal), in amoeba and in human cultured macrophages, and survival in water is unaffected by the deletion. Supplementing CYE agar with antioxidants that neutralize ROS or introducing the oxyR gene in trans rescues the observed growth defect. Moreover, the mutant grows as well as the wild type on CYE plates made with agarose instead of agar, suggesting that a compound present in the latter is responsible for the growth defect phenotype.


Sign in / Sign up

Export Citation Format

Share Document