scholarly journals A model screening pipeline for bile acid converting anti-Clostridioides difficile bacteria reveals unique biotherapeutic potential of Peptacetobacter hiranonis

2021 ◽  
Author(s):  
Akhil A. Vinithakumari ◽  
Belen G. Hernandez ◽  
Sudeep Ghimire ◽  
Seidu Adams ◽  
Caroline Stokes ◽  
...  

Clostridioides difficile is an antibiotic-resistant bacterium that causes serious, toxin-mediated enteric disease in humans and animals. Gut dysbiosis and resultant alterations in the intestinal bile acid profile play an important role in the pathogenesis of C. difficile infection (CDI). Restoration of the gut microbiota and re-establishment of bacterial bile acid metabolism using fecal microbiota transplantation (FMT) has been established as a promising strategy against this disease, although this method has several limitations. Thus, a more defined and precise microbiota-based approach using bacteria that biotransform primary bile acids into secondary bile acids could effectively overcome these limitations and control CDI. Therefore, a screening pipeline was developed to isolate bile acid converting bacteria from fecal samples. Dogs were selected as a model CDI-resistant microbiota donor for this pipeline, which yielded a novel Peptacetobacter hiranonis strain that possesses unique anti-C. difficile properties, and both bile acid deconjugation and 7-α dehydroxylating activities to perform bile acid conversion. The screening pipeline included a set of in vitro tests along with a precision in vivo gut colonization and bile acid conversion test using altered Schadler flora (ASF) colonized mice. In addition, this pipeline also provided essential information on the growth requirements for screening and cultivating the candidate bacterium, its survival in a CDI predisposing environment, and potential pathogenicity. The model pipeline documented here yielded multiple bile acid converting bacteria, including a P. hiranonis isolate with unique anti-C. difficile biotherapeutic potential, which can be further tested in subsequent preclinical and human clinical trials.

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Zhe Wang ◽  
Xu-Ling Li ◽  
Kin-Fong Hong ◽  
Ting-Ting Zhao ◽  
Rui-Xue Dong ◽  
...  

Astragalus Radix is one of the common traditional Chinese medicines used to treat diabetes. However, the underlying mechanism is not fully understood. Flavones are a class of active components that have been reported to exert various activities. Existing evidence suggests that flavones from Astragalus Radix may be pivotal in modulating progression of diabetes. In this study, total flavones from Astragalus Radix (TFA) were studied to observe its effects on metabolism of bile acids both in vivo and in vitro. C57BL/6J mice were treated with STZ and high-fat feeding to construct diabetic model, and HepG2 cell line was applied to investigate the influence of TFA on liver cells. We found a serious disturbance of bile acids and lipid metabolism in diabetic mice, and oral administration or cell incubation with TFA significantly reduced the production of total cholesterol (TCHO), total triglyceride, glutamic oxalacetic transaminase (AST), glutamic-pyruvic transaminase (ALT), and low-density lipoprotein (LDL-C), while it increased the level of high-density lipoprotein (HDL-C). The expression of glucose transporter 2 (GLUT2) and cholesterol 7α-hydroxylase (CYP7A1) was significantly upregulated on TFA treatment, and FXR and TGR5 play pivotal role in modulating bile acid and lipid metabolism. This study supplied a novel understanding towards the mechanism of Astragalus Radix on controlling diabetes.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Stef De Lombaerde ◽  
Ken Kersemans ◽  
Sara Neyt ◽  
Jeroen Verhoeven ◽  
Christian Vanhove ◽  
...  

Introduction. An in vivo determination of bile acid hepatobiliary transport efficiency can be of use in liver disease and preclinical drug development. Given the increased interest in bile acid Positron Emission Tomography- (PET-) imaging, a further understanding of the impact of 18-fluorine substitution on bile acid handling in vitro and in vivo can be of significance. Methods. A number of bile acid analogues were conceived for nucleophilic substitution with [18F]fluoride: cholic acid analogues of which the 3-, 7-, or 12-OH function is substituted with a fluorine atom (3α-[18F]FCA; 7β-[18F]FCA; 12β-[18F]FCA); a glycocholic and chenodeoxycholic acid analogue, substituted on the 3-position (3β-[18F]FGCA and 3β-[18F]FCDCA, resp.). Uptake by the bile acid transporters NTCP and OATP1B1 was evaluated with competition assays in transfected CHO and HEK cell lines and efflux by BSEP in membrane vesicles. PET-scans with the tracers were performed in wild-type mice (n=3 per group): hepatobiliary transport was monitored and compared to a reference tracer, namely, 3β-[18F]FCA. Results. Compounds 3α-[18F]FCA, 3β-[18F]FGCA, and 3β-[18F]FCDCA were synthesized in moderate radiochemical yields (4–10% n.d.c.) and high radiochemical purity (>99%); 7β-[18F]FCA and 12β-[18F]FCA could not be synthesized and included further in this study. In vitro evaluation showed that 3α-FCA, 3β-FGCA, and 3β-FCDCA all had a low micromolar Ki-value for NTCP, OATP1B1, and BSEP. In vivo, 3α-[18F]FCA, 3β-[18F]FGCA, and 3β-[18F]FCDCA displayed hepatobiliary transport with varying efficiency. A slight yet significant difference in uptake and efflux rate was noticed between the 3α-[18F]FCA and 3β-[18F]FCA epimers. Conjugation of 3β-[18F]FCA with glycine had no significant effect in vivo. Compound 3β-[18F]FCDCA showed a significantly slower hepatic uptake and efflux towards gallbladder and intestines. Conclusion. A set of 18F labeled bile acids was synthesized that are substrates of the bile acid transporters in vitro and in vivo and can serve as PET-biomarkers for hepatobiliary transport of bile acids.


2020 ◽  
Vol 88 (6) ◽  
Author(s):  
Jenessa A. Winston ◽  
Alissa J. Rivera ◽  
Jingwei Cai ◽  
Rajani Thanissery ◽  
Stephanie A. Montgomery ◽  
...  

ABSTRACT Clostridioides difficile infection (CDI) is associated with increasing morbidity and mortality posing an urgent threat to public health. Recurrence of CDI after successful treatment with antibiotics is high, thus necessitating discovery of novel therapeutics against this enteric pathogen. Administration of the secondary bile acid ursodeoxycholic acid (UDCA; ursodiol) inhibits the life cycles of various strains of C. difficile in vitro, suggesting that the FDA-approved formulation of UDCA, known as ursodiol, may be able to restore colonization resistance against C. difficile in vivo. However, the mechanism(s) by which ursodiol is able to restore colonization resistance against C. difficile remains unknown. Here, we confirmed that ursodiol inhibits C. difficile R20291 spore germination and outgrowth, growth, and toxin activity in a dose-dependent manner in vitro. In a murine model of CDI, exogenous administration of ursodiol resulted in significant alterations in the bile acid metabolome with little to no changes in gut microbial community structure. Ursodiol pretreatment resulted in attenuation of CDI pathogenesis early in the course of disease, which coincided with alterations in the cecal and colonic inflammatory transcriptome, bile acid-activated receptors nuclear farnesoid X receptor (FXR) and transmembrane G-protein-coupled membrane receptor 5 (TGR5), which are able to modulate the innate immune response through signaling pathways such as NF-κB. Although ursodiol pretreatment did not result in a consistent decrease in the C. difficile life cycle in vivo, it was able to attenuate an overly robust inflammatory response that is detrimental to the host during CDI. Ursodiol remains a viable nonantibiotic treatment and/or prevention strategy against CDI. Likewise, modulation of the host innate immune response via bile acid-activated receptors FXR and TGR5 represents a new potential treatment strategy for patients with CDI.


2020 ◽  
Vol 21 (21) ◽  
pp. 8168
Author(s):  
Andreas Schmid ◽  
Jonas Gehl ◽  
Miriam Thomalla ◽  
Alexandra Hochberg ◽  
Anja Kreiß ◽  
...  

The adipokine CTRP-3 (C1q/TNF-related protein-3) exerts anti-inflammatory and anti-diabetic effects. Its regulation in obesity and during weight loss is unknown. Serum and adipose tissue (AT) samples were obtained from patients (n = 179) undergoing bariatric surgery (BS). Moreover, patients (n = 131) participating in a low-calorie diet (LCD) program were studied. CTRP 3 levels were quantified by ELISA and mRNA expression was analyzed in AT and in 3T3-L1 adipocytes treated with bile acids and incretins. There was a persistent downregulation of CTRP-3 serum levels during weight loss. CTRP-3 expression was higher in subcutaneous than in visceral AT and serum levels of CTRP-3 were positively related to AT expression levels. A rapid decrease of circulating CTRP-3 was observed immediately upon BS, suggesting weight loss-independent regulatory mechanisms. Adipocytes CTRP-3 expression was inhibited by primary bile acid species and GLP 1. Adipocyte-specific CTRP-3 deficiency increased bile acid receptor expression. Circulating CTRP-3 levels are downregulated during weight loss, with a considerable decline occurring immediately upon BS. Mechanisms dependent and independent of weight loss cause the post-surgical decline of CTRP-3. The data strongly argue for regulatory interrelations of CTRP-3 with bile acids and incretin system.


2021 ◽  
Vol 8 (Supplement_1) ◽  
pp. S610-S610
Author(s):  
Romeo Papazyan ◽  
Bryan Fuchs ◽  
Ken Blount ◽  
Carlos Gonzalez ◽  
Bill Shannon

Abstract Background Microbiota-based treatments are increasingly evaluated as a strategy to reduce recurrence of Clostridioides difficile infection (rCDI), and their proposed mechanisms include restoration of the microbiota and microbiota-mediated functions, including bile acid metabolism. RBX2660—a broad-consortium investigational live biotherapeutic—has been evaluated in >600 participants in 6 clinical trials, with consistent reduction of rCDI recurrence. Here we report that fecal bile acid compositions were significantly restored in treatment-responsive participants in PUNCH CD3—a Phase 3 randomized, double-blinded, placebo-controlled trial of RBX2660. Methods PUNCH CD3 participants received a single dose of RBX2660 or placebo between 24 to 72 hours after completing rCDI antibiotic treatment. Clinical response was the absence of CDI recurrence at eight weeks after treatment. Participants voluntarily submitted stool samples prior to blinded study treatment (baseline), 1, 4 and 8 weeks, 3 and 6 months after receiving study treatment. A liquid chromatography tandem mass spectrometry method was developed to extract and quantify 33 bile acids from all participant fecal samples received up to the 8-week time point. Mean bile acid compositions were fit to a Dirichlet multinomial distribution and compared across time points and between RBX2660- and placebo-treated participants. Results Clinically, RBX2660 demonstrated superior efficacy versus placebo (70.4% versus 58.1%). RBX2660-treated clinical responders’ bile acid compositions shifted significantly from before to after treatment. Specifically, primary bile acids predominated before treatment, whereas secondary bile acids predominated after treatment (Figure 1A). These changes trended higher among RBX2660 responders compared to placebo responders. Importantly, median levels of lithocholic acid (LCA) and deoxycholic acid (DCA) showed large, significant increases after treatment (Figure 1B). A. Bile acid compositions before (BL) and up to 8 weeks after RBX2660 treatment among treatment responders. Compositions are shown as the fraction of total bile acids classified as primary or secondary conjugated or deconjugated bile acids. B. Concentrations of lithocholic acid (LCA) and deoxycholic acid (DCA) among RBX2660 treatment responders, shown with individual samples and time point group median with interquartile ranges. Conclusion Among PUNCH CD3 clinical responders, RBX2660 significantly restored bile acids from less to more healthy compositions. These clinically correlated bile acid shifts are highly consistent with results from a prior trial of RBX2660. Disclosures Romeo Papazyan, PhD, Ferring Research Institute (Employee) Bryan Fuchs, PhD, Ferring Pharmaceuticals (Employee) Ken Blount, PhD, Rebiotix Inc., a Ferring Company (Employee)


2019 ◽  
Author(s):  
Pavan Bhargava ◽  
Leah Mische ◽  
Matthew D. Smith ◽  
Emily Harrington ◽  
Kathryn C Fitzgerald ◽  
...  

AbstractMultiple sclerosis (MS) is an inflammatory demyelinating disorder of the CNS. Bile acids are cholesterol metabolites that can signal through receptors on cells throughout the body, including the CNS and immune system. Whether bile acid metabolism is abnormal in MS is unknown. Using global and targeted metabolomic profiling, we identified lower levels of circulating bile acid metabolites in multiple cohorts of adult and pediatric MS patients compared to controls. In white matter lesions from MS brain tissue, we noted the presence of bile acid receptors on immune and glial cells. To mechanistically examine the implications of lower levels of bile acids in MS, we studied the in vitro effects of an endogenous bile acid – tauroursodeoxycholic acid (TUDCA) on astrocyte and microglial polarization. TUDCA prevented neurotoxic (A1) polarization of astrocytes and pro-inflammatory polarization of microglia in a dose-dependent manner. TUDCA supplementation in experimental autoimmune encephalomyelitis reduced severity of disease, based on behavioral and pathological measures. We demonstrate that bile acid metabolism is altered in MS; bile acid supplementation prevents polarization of astrocytes and microglia to neurotoxic phenotypes and ameliorates neuropathology in an animal model of MS. These findings identify dysregulated bile acid metabolism as a potential therapeutic target in MS.


2020 ◽  
Author(s):  
Kenya Honda ◽  
Yuko Sato ◽  
Koji Atarashi ◽  
Damian Plichta ◽  
Yasumichi Arai ◽  
...  

Abstract Centenarians, or individuals who have lived more than a century, represent the ultimate model of successful longevity associated with decreased susceptibility to ageing-associated illness and chronic inflammation. The gut microbiota is considered to be a critical determinant of human health and longevity. Here we show that centenarians (average 107 yo) have a distinct gut microbiome enriched in microbes capable of generating unique secondary bile acids, including iso-, 3-oxo-, and isoallo-lithocholic acid (LCA), as compared to elderly (85-89 yo) and young (21-55 yo) controls. Among these bile acids, the biosynthetic pathway for isoalloLCA had not been described previously. By screening 68 bacterial isolates from a centenarian’s faecal microbiota, we identified Parabacteroides merdae and Odoribacteraceae strains as effective producers of isoalloLCA. Furthermore, we generated and tested mutant strains of P. merdae to show that the enzymes 5α-reductase (5AR) and 3β-hydroxysteroid dehydrogenase (3βHSDH) were responsible for isoalloLCA production. This secondary bile acid derivative exerted the most potent antimicrobial effects among the tested bile acid compounds against gram-positive (but not gram-negative) multidrug-resistant pathogens, including Clostridioides difficile and vancomycin-resistant Enterococcus faecium. These findings suggest that specific bile acid metabolism may be involved in reducing the risk of pathobiont infection, thereby potentially contributing to longevity.


2021 ◽  
Vol 14 ◽  
pp. 175628482110177
Author(s):  
Benjamin H. Mullish ◽  
Jessica R. Allegretti

Clostridioides difficile infection (CDI) remains a major global cause of gastrointestinal infection, with significant associated morbidity, mortality and impact upon healthcare system resources. Recent antibiotic use is a key risk factor for the condition, with the marked antibiotic-mediated perturbations in gut microbiome diversity and composition that underpin the pathogenesis of CDI being well-recognised. However, only relatively recently has further insight been gained into the specific mechanistic links between these gut microbiome changes and CDI, with alteration of gut microbial metabolites – in particular, bile acid metabolism – being a particular area of focus. A variety of in vitro, ex vivo, animal model and human studies have now demonstrated that loss of gut microbiome members with bile-metabolising capacity (including bile salt hydrolases, and 7-α-dehydroxylase) – with a resulting alteration of the gut bile acid milieu – contributes significantly to the disease process in CDI. More specifically, this microbiome disruption results in the enrichment of primary conjugated bile acids (including taurocholic acid, which promotes the germination of C. difficile spores) and loss of secondary bile acids (which inhibit the growth of C. difficile, and may bind to and limit activity of toxins produced by C. difficile). These bile acid changes are also associated with reduced activity of the farnesoid X receptor pathway, which may exacerbate C. difficile colitis throughout its impact upon gut barrier function and host immune/inflammatory response. Furthermore, a key mechanism of efficacy of faecal microbiota transplant (FMT) in treating recurrent CDI has been shown to be restoration of gut microbiome bile metabolising functionality; ensuring the presence of this functionality among defined microbial communities (and other ‘next generation’ FMT products) designed to treat CDI may be critical to their success.


2020 ◽  
Author(s):  
A.D. Reed ◽  
M.A. Nethery ◽  
A. Stewart ◽  
R. Barrangou ◽  
C.M. Theriot

AbstractClostridioides difficile is one of the leading causes of antibiotic-associated diarrhea. Gut microbiota-derived secondary bile acids and commensal Clostridia that encode the bile acid inducible (bai) operon are associated with protection from C. difficile infection (CDI), although the mechanism is not known. In this study we hypothesized that commensal Clostridia are important for providing colonization resistance against C. difficile due to their ability to produce secondary bile acids, as well as potentially competing against C. difficile for similar nutrients. To test this hypothesis, we examined the ability of four commensal Clostridia encoding the bai operon (C. scindens VPI 12708, C. scindens ATCC 35704, C. hiranonis, and C. hylemonae) to convert CA to DCA in vitro, and if the amount of DCA produced was sufficient to inhibit growth of a clinically relevant C. difficile strain. We also investigated the competitive relationship between these commensals and C. difficile using an in vitro co-culture system. We found that inhibition of C. difficile growth by commensal Clostridia supplemented with CA was strain-dependent, correlated with the production of ∼2 mM DCA, and increased expression of bai operon genes. We also found that C. difficile was able to outcompete all four commensal Clostridia in an in vitro co-culture system. These studies are instrumental in understanding the relationship between commensal Clostridia and C. difficile in the gut, which is vital for designing targeted bacterial therapeutics. Future studies dissecting the regulation of the bai operon in vitro and in vivo and how this affects CDI will be important.ImportanceCommensal Clostridia encoding the bai operon such as C. scindens have been associated with protection against CDI, however the mechanism for this protection is unknown. Herein, we show four commensal Clostridia that encode the bai operon effect C. difficile growth in a strain-dependent manner, with and without the addition of cholate. Inhibition of C. difficile by commensals correlated with the efficient conversion of cholate to deoxycholate, a secondary bile acid that inhibits C. difficile germination, growth, and toxin production. Competition studies also revealed that C. difficile was able to outcompete the commensals in an in vitro co-culture system. These studies are instrumental in understanding the relationship between commensal Clostridia and C. difficile in the gut, which is vital for designing targeted bacterial therapeutics.


Nutrients ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 3143
Author(s):  
Min Yang ◽  
Yu Gu ◽  
Lingfeng Li ◽  
Tianyu Liu ◽  
Xueli Song ◽  
...  

Inflammatory bowel disease (IBD) is a chronic, relapsing inflammatory disorder of the gastrointestinal tract, with increasing prevalence, and its pathogenesis remains unclear. Accumulating evidence suggested that gut microbiota and bile acids play pivotal roles in intestinal homeostasis and inflammation. Patients with IBD exhibit decreased microbial diversity and abnormal microbial composition marked by the depletion of phylum Firmicutes (including bacteria involved in bile acid metabolism) and the enrichment of phylum Proteobacteria. Dysbiosis leads to blocked bile acid transformation. Thus, the concentration of primary and conjugated bile acids is elevated at the expense of secondary bile acids in IBD. In turn, bile acids could modulate the microbial community. Gut dysbiosis and disturbed bile acids impair the gut barrier and immunity. Several therapies, such as diets, probiotics, prebiotics, engineered bacteria, fecal microbiota transplantation and ursodeoxycholic acid, may alleviate IBD by restoring gut microbiota and bile acids. Thus, the bile acid–gut microbiota axis is closely connected with IBD pathogenesis. Regulation of this axis may be a novel option for treating IBD.


Sign in / Sign up

Export Citation Format

Share Document