scholarly journals Genetic patterns in Montipora capitata across an environmental mosaic in Kaneohe Bay

2021 ◽  
Author(s):  
Carlo Caruso ◽  
Mariana Rocha de Souza ◽  
Lupita Ruiz-Jones ◽  
Dennis Conetta ◽  
Joshua Hancock ◽  
...  

Spatial genetic structure (SGS) is important to a population's ability to adapt to environmental change. For species that reproduce both sexually and asexually, the relative contribution of each reproductive mode has important ecological and evolutionary implications because asexual reproduction can have a strong effect on SGS. Reef building corals reproduce sexually, but many species also propagate asexually under certain conditions. In order to understand SGS and the relative importance of reproductive mode across environmental gradients, we evaluated genetic relatedness in almost 600 colonies of Montipora capitata across 30 environmentally characterized sites in Kaneohe Bay, Oahu, Hawaii using low-depth restriction digest associated sequencing. Clonal colonies were relatively rare overall but influenced SGS. Clones were located significantly closer to one another spatially than average colonies and were more frequent on sites where wave energy was relatively high, suggesting a strong role of mechanical breakage in their formation. Excluding clones, we found no evidence of isolation by distance within sites or across the bay. Several environmental characteristics were significant predictors of the underlying genetic variation (including degree heating weeks, time spent above 30°C, depth, sedimentation rate and wave height); however, they only explained 5% of this genetic variation. Our results show that colony fragmentation contributes to the ecology of M. capitata at local scales and that genetic diversity is maintained despite strong environmental gradients in a highly impacted ecosystem, suggesting potential for broad adaptation or acclimatization in this population.

The Auk ◽  
2000 ◽  
Vol 117 (3) ◽  
pp. 651-662 ◽  
Author(s):  
Corinne Rabouam ◽  
Vincent Bretagnolle ◽  
Yves Bigot ◽  
Georges Periquet

Abstract We used DNA fingerprinting to assess genetic structure of populations in Cory's Shearwater (Calonectris diomedea). We analyzed mates and parent-offspring relationships, as well as the amount and distribution of genetic variation within and among populations, from the level of subcolony to subspecies. We found no evidence of extrapair fertilization, confirming that the genetic breeding system matches the social system that has been observed in the species. Mates were closely related, and the level of genetic relatedness within populations was within the range usually found in inbred populations. In contrast to previous studies based on allozymes and mtDNA polymorphism, DNA fingerprinting using microsatellites revealed consistent levels of genetic differentiation among populations. However, analyzing the two subspecies separately revealed that the pattern of genetic variation among populations did not support the model of isolation by distance. Natal dispersal, as well as historic and/or demographic events, probably contributed to shape the genetic structure of populations in the species.


2014 ◽  
Vol 11 (22) ◽  
pp. 6495-6507 ◽  
Author(s):  
S. H. Árnason ◽  
Ǽ. Th. Thórsson ◽  
B. Magnússon ◽  
M. Philipp ◽  
H. Adsersen ◽  
...  

Abstract. Sea sandwort (Honckenya peploides) was one of the first plants to successfully colonize and reproduce on the volcanic island Surtsey, formed in 1963 off the southern coast of Iceland. Using amplified fragment length polymorphic (AFLP) markers, we examined levels of genetic variation and differentiation among populations of H. peploides on Surtsey in relation to populations on the nearby island Heimaey and from the southern coast of Iceland. Selected populations from Denmark and Greenland were used for comparison. In addition, we tested whether the effects of isolation by distance could be seen in the Surtsey populations. Using two primer combinations, we obtained 173 AFLP markers from a total of 347 plant samples. The resulting binary matrix was then analysed statistically. The main results include the following: (i) Surtsey had the highest proportion of polymorphic markers as well as a comparatively high genetic diversity (55.5% proportion of polymorphic loci, PLP; 0.1974 HE) and Denmark the lowest (31.8% PLP; 0.132 HE), indicating rapid expansion during an early stage of population establishment on Surtsey and/or multiple origins of immigrants; (ii) the total genetic differentiation (FST) among Surtsey (0.0714) and Heimaey (0.055) populations was less than half of that found among the mainland populations in Iceland (0.1747), indicating substantial gene flow on the islands; (iii) most of the genetic variation (79%, p < 0.001) was found within localities, possibly due to the outcrossing and subdioecious nature of the species; (iv) a significant genetic distance was found within Surtsey, among sites, and this appeared to correlate with the age of plant colonization; and (v) the genetic structure analysis indicated multiple colonization episodes on Surtsey, whereby H. peploides most likely immigrated from the nearby island of Heimaey and directly from the southern coast of Iceland.


Botany ◽  
2009 ◽  
Vol 87 (11) ◽  
pp. 1089-1095 ◽  
Author(s):  
Stephen B. Heard ◽  
Linley K. Jesson ◽  
Kirby Tulk

The Gulf of St. Lawrence aster ( Symphyotrichum laurentianum (Fernald) G.L. Nesom) is an endemic annual of saline habitats in the southern Gulf of St. Lawrence. It is listed as a threatened species, and has recently experienced population declines in much of its range. We used 11 allozyme markers to assay population genetic variation in six wild populations of S. laurentianum from the Magdalen Islands, Quebec (QC), the only remaining wild population from Prince Edward Island National Park (PEI), and a greenhouse population founded in 1999 with seed collected from PEI. Symphyotrichum laurentianum harbours moderate genetic diversity (Ps = 0.36, As = 1.54), with only modest spatial genetic structure (pairwise FST < 0.15) and no significant isolation by distance. The PEI population had greatly reduced allelic diversity compared with the populations from the Magdalen Islands, which likely act as a reservoir of genetic variation in S. laurentianum. Recent loss of alleles during population decline in PEI is suggested by the retention of greater allelic diversity in the greenhouse population. Estimates of breeding structure suggest small but nonzero rates of outcross pollination (FIS = 0.73, 95% CI = 0.48–0.97; outcrossing rate ∼16%). Population genetic structure in S. laurentianum can inform those forming and carrying out conservation and recovery plans for this threatened species.


2017 ◽  
Vol 95 (12) ◽  
pp. 901-907 ◽  
Author(s):  
Benoit Talbot ◽  
Maarten J. Vonhof ◽  
Hugh G. Broders ◽  
M. Brock Fenton ◽  
Nusha Keyghobadi

Subdivided populations can be described by different models of population structure that reflect population organization, dynamics, and connectivity. We used genetic data to investigate population structure in two geographically sympatric, congeneric species of generalist ectoparasites of warm-blooded animals. We characterized the spatial genetic structure of the eastern bat bug (Cimex adjunctus Barber, 1939), an understudied and fairly abundant species, using microsatellite markers at a spatial scale representing contemporary dispersal of the species. We found seven genetic clusters, global [Formula: see text] of 0.2, 33% of genetic variation among sites, and nonsignificant isolation-by-distance. We compared these results with the common bed bug (Cimex lectularius L., 1758), a closely related but conversely well-known species, in the same geographic area. We found stronger genetic structuring in C. lectularius than in C. adjunctus, with 11 genetic clusters, [Formula: see text] of 0.7, 57% of genetic variation among sites, and significant but weak isolation-by-distance (R2 = 0.09). These results suggest that while both species can be described as having classic metapopulation structure, C. adjunctus leans more towards a patchy population and C. lectularius leans more towards a nonequilibrium metapopulation. The difference in population structure between these species may be attributable to differences in movement potential and extinction–colonization dynamics.


2014 ◽  
Vol 11 (6) ◽  
pp. 10045-10082 ◽  
Author(s):  
S. H. Árnason ◽  
Ǽ. Th. Thórsson ◽  
B. Magnússon ◽  
M. Philipp ◽  
H. E. Adsersen ◽  
...  

Abstract. Sea Sandwort (Honckenya peploides) is one of the first plants to successfully colonize and reproduce on the volcanic island Surtsey, formed in 1963 off the southern coast of Iceland. Using amplified fragment length polymorphic (AFLP) markers we examined levels of genetic variation and differentiation among populations of H. peploides on Surtsey in relation to populations on the nearby island Heimaey and from the southern coast of Iceland. Selected populations from Denmark and Greenland were used for comparison. In addition, we tested whether the effects of isolation by distance can be seen in the Surtsey populations. Using two primer combinations, we obtained 173 AFLP markers from a total of 347 plant samples. The resulting binary matrix was then analyzed statistically. Main results include the followings: (i) Surtsey has the highest proportion of polymorphic markers as well as a comparatively high genetic diversity (55.5% PLP; 0.1974 HE) and Denmark the lowest (31.8% PLP; 0.132 HE), indicating rapid expansion during an early stage of population establishment on Surtsey and/or multiple origins of immigrants; (ii) the total genetic differentiation (FST) among Surtsey (0.0714) and Heimaey (0.055) populations was less than half of that found among the mainland populations in Iceland (0.1747), indicating substantial gene flow on the islands; (iii) most of the genetic variation (79%, p<0.001) was found within localities, possibly due to the outcrossing and subdioecious nature of the species; (iv) a significant genetic distance was found within Surtsey, among sites, and this appears to correlate with the age of plant colonization; and (v) the genetic structure analysis indicated multiple colonization episodes on Surtsey, whereby H. peploides most likely immigrated from the nearby island of Heimaey and directly from the southern coast of Iceland.


2017 ◽  
Author(s):  
Gideon S. Bradburd ◽  
Graham M. Coop ◽  
Peter L. Ralph

AbstractA classic problem in population genetics is the characterization of discrete population structure in the presence of continuous patterns of genetic differentiation. Especially when sampling is discontinuous, the use of clustering or assignment methods may incorrectly ascribe differentiation due to continuous processes (e.g., geographic isolation by distance) to discrete processes, such as geographic, ecological, or reproductive barriers between populations. This reflects a shortcoming of current methods for inferring and visualizing population structure when applied to genetic data deriving from geographically distributed populations. Here, we present a statistical framework for the simultaneous inference of continuous and discrete patterns of population structure. The method estimates ancestry proportions for each sample from a set of two-dimensional population layers, and, within each layer, estimates a rate at which relatedness decays with distance. This thereby explicitly addresses the “clines versus clusters” problem in modeling population genetic variation. The method produces useful descriptions of structure in genetic relatedness in situations where separated, geographically distributed populations interact, as after a range expansion or secondary contact. We demonstrate the utility of this approach using simulations and by applying it to empirical datasets of poplars and black bears in North America.Author summaryOne of the first steps in the analysis of genetic data, and a principal mission of biology, is to describe and categorize natural variation. A continuous pattern of differentiation (isolation by distance), where individuals found closer together in space are, on average, more genetically similar than individuals sampled farther apart, can confound attempts to categorize natural variation into groups. This is because current statistical methods for assigning individuals to discrete clusters cannot accommodate spatial patterns, and so are forced to use clusters to describe what is in fact continuous variation. As isolation by distance is common in nature, this is a substantial shortcoming of existing methods. In this study, we introduce a new statistical method for categorizing natural genetic variation - one that describes variation as a combination of continuous and discrete patterns. We demonstrate that this method works well and can capture patterns in population genomic data without resorting to splitting populations where they can be described by continuous patterns of variation.


Author(s):  
NS Locatelli ◽  
JA Drew

AbstractAs the effects of anthropogenic climate change grow, mass coral bleaching events are expected to increase in severity and extent. Much research has focused on the environmental stressors themselves, symbiotic community compositions, and transcriptomics of the coral host. Globally, fine-scale population structure of corals is understudied. This study reports patterns of population structure and clonal prevalence found in Montipora capitata and Porites compressa in Kaneohe Bay, Oahu. Generated using ddRAD methods, genetic data reveals different patterns in each taxa despite them being exposed to the same environmental conditions. STRUCTURE and site-level pairwise FST analyses suggest population structure in M. capitata resembling isolation by distance. Mantel tests show strong, significant FST correlations in M. capitata in relation to geographic distance, water residence time, and salinity and temperature variability (range) at different time scales. STRUCTURE did not reveal strong population structure in P. compressa. FST correlation was found in P. compressa in relation to yearly average sea surface height. We also report high prevalence of clonal colonies in P. compressa in outer bay sites exposed to storms and high energy swells. Amongst only outer bay sites, 7 out of 23 sequenced individuals were clones of other colonies. Amongst all 47 sequenced P. compressa individuals, 8 were clones. Only one clone was detected in M. capitata. Moving forward, it is crucial to consider these preexisting patterns relating to genetic diversity when planning and executing conservation and restoration initiatives. Recognizing that there are differences in population structure and diversity between coral taxa, even on such small-scales, is important as it suggests that small-scale reefs must be managed by species rather than by geography.


2007 ◽  
Vol 97 (3) ◽  
pp. 299-308 ◽  
Author(s):  
J.T. Margaritopoulos ◽  
B. Gotosopoulos ◽  
Z. Mamuris ◽  
P.J. Skouras ◽  
K.C. Voudouris ◽  
...  

AbstractRestriction fragment length polymorphism analysis of two segments of mitochondrial DNA (COI and 16S rRNA) was used to examine genetic variation in Sesamia nonagrioides (Lefèbvre) populations from the Mediterranean basin. Four populations were collected from central and southern Greece, and five from northern latitudes: Greece, Italy, France and Spain. No variation was observed in COI, while 16S rRNA segment proved highly polymorphic and 28 different haplotypes were found. Lower intra-population polymorphism was found in the northern populations than in southern ones. Although no significant isolation by distance was found, the UPGMA tree based on Nei's raw number of nucleotide differences separated the populations into two major groups, i.e. one with the northern (40.6°N–43.4°N) and the other with the southern populations (37.3°N–39.2°N). Analysis of molecular variance revealed that most of the variation was between the two major groups (ΦCT=0.559), and all pairwise comparisons between the northern and southern populations resulted in high and significant FST values (overall FST=0.604). The high FST values and the strong spatial genetic structure indicate that long-distance migration may be a rare event. The populations do not seem to have experienced a strong historical bottleneck. The occurrence of a few widespread haplotypes and the genetic similarity of the northern populations could be attributed to a historical expansion of certain haplotypes from the south towards to the northern borders of the species' distribution area.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Kelly B. Klingler ◽  
Joshua P. Jahner ◽  
Thomas L. Parchman ◽  
Chris Ray ◽  
Mary M. Peacock

Abstract Background Distributional responses by alpine taxa to repeated, glacial-interglacial cycles throughout the last two million years have significantly influenced the spatial genetic structure of populations. These effects have been exacerbated for the American pika (Ochotona princeps), a small alpine lagomorph constrained by thermal sensitivity and a limited dispersal capacity. As a species of conservation concern, long-term lack of gene flow has important consequences for landscape genetic structure and levels of diversity within populations. Here, we use reduced representation sequencing (ddRADseq) to provide a genome-wide perspective on patterns of genetic variation across pika populations representing distinct subspecies. To investigate how landscape and environmental features shape genetic variation, we collected genetic samples from distinct geographic regions as well as across finer spatial scales in two geographically proximate mountain ranges of eastern Nevada. Results Our genome-wide analyses corroborate range-wide, mitochondrial subspecific designations and reveal pronounced fine-scale population structure between the Ruby Mountains and East Humboldt Range of eastern Nevada. Populations in Nevada were characterized by low genetic diversity (π = 0.0006–0.0009; θW = 0.0005–0.0007) relative to populations in California (π = 0.0014–0.0019; θW = 0.0011–0.0017) and the Rocky Mountains (π = 0.0025–0.0027; θW = 0.0021–0.0024), indicating substantial genetic drift in these isolated populations. Tajima’s D was positive for all sites (D = 0.240–0.811), consistent with recent contraction in population sizes range-wide. Conclusions Substantial influences of geography, elevation and climate variables on genetic differentiation were also detected and may interact with the regional effects of anthropogenic climate change to force the loss of unique genetic lineages through continued population extirpations in the Great Basin and Sierra Nevada.


2012 ◽  
Vol 60 (1) ◽  
pp. 32 ◽  
Author(s):  
Laurence J. Clarke ◽  
Duncan I. Jardine ◽  
Margaret Byrne ◽  
Kelly Shepherd ◽  
Andrew J. Lowe

Atriplex sp. Yeelirrie Station (L. Trotter & A. Douglas LCH 25025) is a highly restricted, potentially new species of saltbush, known from only two sites ~30 km apart in central Western Australia. Knowledge of genetic structure within the species is required to inform conservation strategies as both populations occur within a palaeovalley that contains significant near-surface uranium mineralisation. We investigate the structure of genetic variation within populations and subpopulations of this taxon using nuclear microsatellites. Internal transcribed spacer sequence data places this new taxon within a clade of polyploid Atriplex species, and the maximum number of alleles per locus suggests it is hexaploid. The two populations possessed similar levels of genetic diversity, but exhibited a surprising level of genetic differentiation given their proximity. Significant isolation by distance over scales of less than 5 km suggests dispersal is highly restricted. In addition, the proportion of variation between the populations (12%) is similar to that among A. nummularia populations sampled at a continent-wide scale (several thousand kilometres), and only marginally less than that between distinct A. nummularia subspecies. Additional work is required to further clarify the exact taxonomic status of the two populations. We propose management recommendations for this potentially new species in light of its highly structured genetic variation.


Sign in / Sign up

Export Citation Format

Share Document