scholarly journals Factorbook: an Updated Catalog of Transcription Factor Motifs and Candidate Regulatory Motif Sites

2021 ◽  
Author(s):  
Henry E. Pratt ◽  
Gregory R. Andrews ◽  
Nishigandha Phalke ◽  
Michael J. Purcaro ◽  
Arjan van der Velde ◽  
...  

ABSTRACTThe human genome contains roughly 1,600 transcription factors (TFs) (1), DNA-binding proteins recognizing characteristic sequence motifs to exert regulatory effects on gene expression. The binding specificities of these factors have been profiled both in vitro, using techniques such as HT-SELEX (2), and in vivo, using techniques including ChIP-seq (3, 4). We previously developed Factorbook, a TF-centric database of annotations, motifs, and integrative analyses based on ChIP-seq data from Phase II of the ENCODE Project. Here we present an update to Factorbook which significantly expands the breadth of cell type and TF coverage. The update includes an expanded motif catalog derived from thousands of ENCODE Phase II and III ChIP-seq experiments and HT-SELEX experiments; this motif catalog is integrated with the ENCODE registry of candidate cis-regulatory elements to annotate a comprehensive collection of genome-wide candidate TF binding sites. The database also offers novel tools for applying the motif models within machine learning frameworks and using these models for integrative analysis, including annotation of variants and disease and trait heritability. We will continue to expand the resource as ENCODE Phase IV data are released.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kornphimol Kulthong ◽  
Guido J. E. J. Hooiveld ◽  
Loes Duivenvoorde ◽  
Ignacio Miro Estruch ◽  
Victor Marin ◽  
...  

AbstractGut-on-chip devices enable exposure of cells to a continuous flow of culture medium, inducing shear stresses and could thus better recapitulate the in vivo human intestinal environment in an in vitro epithelial model compared to static culture methods. We aimed to study if dynamic culture conditions affect the gene expression of Caco-2 cells cultured statically or dynamically in a gut-on-chip device and how these gene expression patterns compared to that of intestinal segments in vivo. For this we applied whole genome transcriptomics. Dynamic culture conditions led to a total of 5927 differentially expressed genes (3280 upregulated and 2647 downregulated genes) compared to static culture conditions. Gene set enrichment analysis revealed upregulated pathways associated with the immune system, signal transduction and cell growth and death, and downregulated pathways associated with drug metabolism, compound digestion and absorption under dynamic culture conditions. Comparison of the in vitro gene expression data with transcriptome profiles of human in vivo duodenum, jejunum, ileum and colon tissue samples showed similarities in gene expression profiles with intestinal segments. It is concluded that both the static and the dynamic gut-on-chip model are suitable to study human intestinal epithelial responses as an alternative for animal models.


1996 ◽  
Vol 313 (3) ◽  
pp. 745-752 ◽  
Author(s):  
Françoise LEVAVASSEUR ◽  
Jocelyne LIÉTARD ◽  
Kohei OGAWA ◽  
Nathalie THÉRET ◽  
Peter D. BURBELO ◽  
...  

Laminin γ1 chain is present in all basement membranes and is expressed at high levels in various diseases, such as hepatic fibrosis. We have identified cis- and trans-acting elements involved in the regulation of this gene in normal rat liver, as well as in hepatocyte primary cultures and hepatoma cell lines. Northern-blot analyses showed that laminin γ1 mRNA was barely detectable in freshly isolated hepatocytes and expressed at high levels in hepatocyte primary cultures, as early as 4 h after liver dissociation. Actinomycin D and cycloheximide treatment in vivo and in vitro indicated that laminin γ1 overexpression in cultured hepatocytes was under the control of transcriptional mechanisms. Transfection of deletion mutants of the 5´ flanking region of murine LAMC1 gene in hepatoma cells that constitutively express laminin γ1 indicated that regulatory elements were located between -594 bp and -94 bp. This segment included GC- and CTC-containing motifs. Gel-shift analyses showed that two complexes were resolved with different affinity for the CTC sequence depending on the location of the GC box. The pattern of complex formation with nuclear factors from freshly isolated and cultured hepatocytes was different from that obtained with total liver and similar to that with hepatoma cells. Southwestern analysis indicated that several polypeptides bound the CTC-rich sequence. Affinity chromatography demonstrated that a Mr 60000 polypeptide was a major protein binding to the CTC motif. This polypeptide is probably involved in the transcriptional activation of various proto-oncogenes and extracellular matrix genes that are expressed at high levels in both hepatoma cells and early hepatocyte cultures.


Crystals ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1131
Author(s):  
Maricela Santana ◽  
Gonzalo Montoya ◽  
Raúl Herrera ◽  
Lía Hoz ◽  
Enrique Romo ◽  
...  

Dental cementum contains unique molecules that regulate the mineralization process in vitro and in vivo, such as cementum protein 1 (CEMP1). This protein possesses amino acid sequence motifs like the human recombinant CEMP1 with biological activity. This novel cementum protein 1-derived peptide (CEMP1-p3, from the CEMP1’s N-terminal domain: (QPLPKGCAAVKAEVGIPAPH), consists of 20 amino acids. Hydroxyapatite (HA) crystals could be obtained through the combination of the amorphous precursor phase and macromolecules such as proteins and peptides. We used a simple method to synthesize peptide/hydroxyapatite nanocomposites using OCP and CEMP1-p3. The characterization of the crystals through scanning electron microscopy (SEM), powder X-ray diffraction (XRD), high--resolution transmission electron microscopy (HRTEM), and Raman spectroscopy revealed that CEMP1-p3 transformed OCP into hydroxyapatite (HA) under constant ionic strength and in a buffered solution. CEMP1-p3 binds and highly adsorbs to OCP and is a potent growth stimulator of OCP crystals. CEMP1-p3 fosters the transformation of OCP into HA crystals with crystalline planes (300) and (004) that correspond to the cell of hexagonal HA. Octacalcium phosphate crystals treated with CEMP1-p3 grown in simulated physiological buffer acquired hexagonal arrangement corresponding to HA. These findings provide new insights into the potential application of CEMP1-p3 on possible biomimetic approaches to generate materials for the repair and regeneration of mineralized tissues, or restorative materials in the orthopedic field.


Author(s):  
Thomas Quail ◽  
Stefan Golfier ◽  
Maria Elsner ◽  
Keisuke Ishihara ◽  
Vasanthanarayan Murugesan ◽  
...  

AbstractInteractions between liquids and surfaces generate forces1,2 that are crucial for many processes in biology, physics and engineering, including the motion of insects on the surface of water3, modulation of the material properties of spider silk4 and self-assembly of microstructures5. Recent studies have shown that cells assemble biomolecular condensates via phase separation6. In the nucleus, these condensates are thought to drive transcription7, heterochromatin formation8, nucleolus assembly9 and DNA repair10. Here we show that the interaction between liquid-like condensates and DNA generates forces that might play a role in bringing distant regulatory elements of DNA together, a key step in transcriptional regulation. We combine quantitative microscopy, in vitro reconstitution, optical tweezers and theory to show that the transcription factor FoxA1 mediates the condensation of a protein–DNA phase via a mesoscopic first-order phase transition. After nucleation, co-condensation forces drive growth of this phase by pulling non-condensed DNA. Altering the tension on the DNA strand enlarges or dissolves the condensates, revealing their mechanosensitive nature. These findings show that DNA condensation mediated by transcription factors could bring distant regions of DNA into close proximity, suggesting that this physical mechanism is a possible general regulatory principle for chromatin organization that may be relevant in vivo.


eLife ◽  
2014 ◽  
Vol 3 ◽  
Author(s):  
Andrew R Bassett ◽  
Asifa Akhtar ◽  
Denise P Barlow ◽  
Adrian P Bird ◽  
Neil Brockdorff ◽  
...  

Although a small number of the vast array of animal long non-coding RNAs (lncRNAs) have known effects on cellular processes examined in vitro, the extent of their contributions to normal cell processes throughout development, differentiation and disease for the most part remains less clear. Phenotypes arising from deletion of an entire genomic locus cannot be unequivocally attributed either to the loss of the lncRNA per se or to the associated loss of other overlapping DNA regulatory elements. The distinction between cis- or trans-effects is also often problematic. We discuss the advantages and challenges associated with the current techniques for studying the in vivo function of lncRNAs in the light of different models of lncRNA molecular mechanism, and reflect on the design of experiments to mutate lncRNA loci. These considerations should assist in the further investigation of these transcriptional products of the genome.


1986 ◽  
Vol 6 (12) ◽  
pp. 4548-4557
Author(s):  
J Hirsh ◽  
B A Morgan ◽  
S B Scholnick

We delimited sequences necessary for in vivo expression of the Drosophila melanogaster dopa decarboxylase gene Ddc. The expression of in vitro-altered genes was assayed following germ line integration via P-element vectors. Sequences between -209 and -24 were necessary for normally regulated expression, although genes lacking these sequences could be expressed at 10 to 50% of wild-type levels at specific developmental times. These genes showed components of normal developmental expression, which suggests that they retain some regulatory elements. All Ddc genes lacking the normal immediate 5'-flanking sequences were grossly deficient in larval central nervous system expression. Thus, this upstream region must contain at least one element necessary for this expression. A mutated Ddc gene without a normal TATA boxlike sequence used the normal RNA start points, indicating that this sequences is not required for start point specificity.


2021 ◽  
Vol 10 (3) ◽  
pp. 109-120
Author(s):  
A. I. Mosiagina ◽  
A. V. Morgun ◽  
A. B. Salmina

There is growing research focusing on endothelial cells as separate units of the blood-brain barrier (BBB), and on the complex relationships between different types of cells within a neurovascular unit. To conduct this type of studies, researches use vastly different in vitro BBB models. The main objective of such models is to study the BBB permeability for different molecules, and to advance the current level of understanding the mechanisms of disease and to develop methods of targeted therapy for the central nervous system. The analysis of the existing Abstract in vitro BBB models and their advantages/disadvantages was conducted using the clinical trial data obtained in Russian/foreign countries. In this review, the authors highlight the most relevant assessment parameters and propose a unified classification of in vitro BBB models. According to the performed analysis, there is a tendency to move from 2D BBB models based on semipermeable inserts to 3D BBB spheroid and microfluidic organ-on-chip models. Moreover, the use of human induced pluripotent stem cells instead of animal primary cells will make it possible to reliably scale the results obtained in vitro to conditions in vivo.


1996 ◽  
Vol 30 (5) ◽  
pp. 469-472
Author(s):  
Tsong-Mei Tsai ◽  
Brian F Shea ◽  
Paul F Souney ◽  
Fred G Volinsky ◽  
Joseph M Scavone ◽  
...  

OBJECTIVE: TO study the effects of ofloxacin on the reliability of urine glucose testing. DESIGN: Open-label, nonrandomized. SETTING: A university-affiliated tertiary care hospital, ambulatory clinic. PARTICIPANTS: Ten healthy volunteers (8 men and 2 women) aged 22-39 years. MAIN OUTCOME MEASURES: Phase I (in vitro) involved the addition of selected amounts of ofloxacin to a set of standard 50-mL urine samples prepared to simulate glycosuria. Phase II (in vivo) involved the oral administration of ofloxacin 400 mg to 10 subjects. Urine was collected: (1) immediately predose, (2) pooled 0–4 hours postdose, and (3) pooled 4–8 hours postdose. Known glucose concentrations were then added to these samples. Clinitest and Diastix tests were performed on all samples. The accuracy of these tests in determining glucose concentrations was compared among urine samples taken before and after ofloxacin dosing. RESULTS: None of the ofloxacin concentrations in phase I (0,25,50, 100, 200,400, and 800 μg/mL) influenced these testing methods at the urine glucose concentrations of 0.0%, 0.5%, 1%, and 2%. Likewise, the accuracy of these two tests was unaffected by ofloxacin administration in phase II. CONCLUSIONS: In single-dose administration, ofloxacin does not interfere with Clinitest or Diastix for determining urine glucose concentrations. Supported by a grant from the RW Johnson Pharmaceutical Research Institute. Presented in abstract form at the American College of Clinical Pharmacy 1994 Winter Practice and Research Forum, February 6–9, 1994, San Diego. CA.


2021 ◽  
Author(s):  
Wentao Li ◽  
Ismatullah Soufiany ◽  
Xiao Lyu ◽  
Lin Zhao ◽  
Chenfei Lu ◽  
...  

Abstract Background: Mounting evidences have shown the importance of lncRNAs in tumorigenesis and cancer progression. LBX2-AS1 is an oncogenic lncRNA that has been found abnormally expressed in gastric cancer and lung cancer samples. Nevertheless, the biological function of LBX2-AS1 in glioblastoma (GBM) and potential molecular mechanism are largely unclear. Methods: Relative levels of LBX2-AS1 in GBM samples and cell lines were detected by qRT-PCR and FISH. In vivo and in vitro regulatory effects of LBX2-AS1 on cell proliferation, epithelial-to-mesenchymal transition (EMT) and angiogenesis in GBM were examined through xenograft models and functional experiments, respectively. The interaction between Sp1 and LBX2-AS1 was assessed by ChIP. Through bioinformatic analyses, dual-luciferase reporter assay, RIP and Western blot, the regulation of LBX2-AS1 and miR-491-5p on the target gene leukemia Inhibitory factor (LIF) was identified. Results: LBX2-AS1 was upregulated in GBM samples and cell lines, and its transcription was promoted by binding to the transcription factor Sp1. As a lncRNA mainly distributed in the cytoplasm, LBX2-AS1 upregulated LIF, and activated the LIF/STAT3 signaling by exerting the miRNA sponge effect on miR-491-5p, thus promoting cell proliferation, EMT and angiogenesis in GBM. Besides, LBX2-AS1 was unfavorable to the progression of glioma and the survival. Conclusion: Upregulated by Sp1, LBX2-AS1 promotes the progression of GBM by targeting the miR-491-5p/LIF axis. It is suggested that LBX2-AS1 may be a novel diagnostic biomarker and therapeutic target of GBM.


Sign in / Sign up

Export Citation Format

Share Document