scholarly journals Impact of Grain for Green Project on Water Resources and Ecological Water Stress in Yanhe River Basin

2021 ◽  
Author(s):  
Yuping Han ◽  
Fan Xia ◽  
Huiping Huang ◽  
Wenbin Mu

Grain for Green project (GGP) initialed by China government since 1999 has achieved substantial achievements accompanied with surface runoff decrease in the Loess Plateau but impacts of large-scale afforestation on regional water resources are uncertain. Hence, the objective of this study is to explore the impact of land use change on generalized water resources and ecological water stress using blue and green water concept taking Yanhe River Basin as a case study. Soil and Water Assessment Tool (SWAT) is applied to quantify summary of green and blue water which is defined as generalized water resources, ecological water requirement of vegetation (forest and grass), agricultural water footprint and virtual water flow are considered as regional water requirements. Land use types of 1980 (scenario?), 2017 (scenario?) are input in SWAT model while keeps other parameters constant in order to isolate the influence of land use changes. Results show that average annual difference of blue, green and generalized water resources is -72.08 million m 3 , 24.34 million m 3 , -47.74 million m 3  respectively when simulation results of scenario? subtracts scenario?and it presents that land use change caused by GGP leads to decrease in blue and generalized water resources whereas increase in green water resources. SURQ in scenario?is more than that in scenario?in all the study period from 1980-2017, green water storage in scenario?is more than that in scenario? in all the study period except in 1998; whereas LATQ in scenario?is less than that in scenario? except in 2000 and 2015, GWQ in 1992, 2000 and 2015, green water flow in 1998. Blue water, green water storage and green water flow in scenario? is less than that in scenario?in the whole basin, 12.89 percent of the basin and 99.21 percent of the basin respectively. Total WF increases from 1995 to 2010 because forest WF increases significantly in this period though agricultural WF and grass WF decreases. Ecological water stress index has no obvious temporal change trend in both land use scenarios but ecological water stress index in scenario? is more than that in scenario?which illustrates that GGP leads to increase of ecological water stress from perspective of generalized water resources

2019 ◽  
Vol 11 (2) ◽  
pp. 338 ◽  
Author(s):  
Leting Lyu ◽  
Xiaorui Wang ◽  
Caizhi Sun ◽  
Tiantian Ren ◽  
Defeng Zheng

Based on a land use interpretation and distributed hydrological model, soil and water assessment tool (SWAT), this study simulated the hydrological cycle in Xihe River Basin in northern China. In addition, the influence of climate variability and land use change on green water resources in the basin from 1995 to 2015 was analyzed. The results show that (1) The ENS (Nash-Sutcliffe model efficiency coefficient) and R2 (coefficient of determination) were 0.94 and 0.89, respectively, in the calibration period, and 0.89 and 0.88, respectively, in the validation period. These indicate high simulation accuracy; (2) Changes in green water flow and green water storage due to climate variability accounted for increases of 2.07 mm/a and 1.28 mm/a, respectively. The relative change rates were 0.49% and 0.9%, respectively, and the green water coefficient decreased by 1%; (3) Changes in green water flow and green water storage due to land use change accounted for increases of 69.15 mm and 48.82 mm, respectively. The relative change rates were 16.4% and 37.2%, respectively, and the green water coefficient increased by 10%; (4) Affected by both climate variability and land use change, green water resources increased by 121.3 mm and the green water coefficient increased by 9% in the Xihe River Basin. It is noteworthy that the influence of land use change was greater than that of climate variability.


2017 ◽  
Vol 15 (4) ◽  
pp. 833-846 ◽  
Author(s):  
S. H. Gheewala ◽  
T. Silalertruksa ◽  
P. Nilsalab ◽  
N. Lecksiwilai ◽  
W. Sawaengsak ◽  
...  

2020 ◽  
Author(s):  
Xingcai Liu

<p>Water stress has increased in many regions of the world during the past decades. It would be likely to continue in the near future due to intensified human activities and changing climate. Better projection of future water stress will facilitate water resources management and planning. Based on the improved water stress index (), we assess the future changes in water stress at the country level under climatic change and socioeconomic dynamics (e.g., population growth, economic development, land-use change) across scenarios. The water deficit, the unmet water demands against local water resources, is estimated for each country. The spatiotemporal characteristics of the global water stress are demonstrated and the main driving force is identified for the exacerbated stress on humans. The monetary value of the water deficit is estimated based on the water price valued for different sources of water withdrawal (e.g., surface water, groundwater, desalination, etc.). The total costs to mitigate or eliminate future water stress are estimated for each country. Finally, the risks and vulnerability due to global change in the future are assessed for each country. This study could be a reference for adaptation to climate change and the potential costs to achieve the SDGs in 2030.</p>


2021 ◽  
Vol 3 ◽  
Author(s):  
Kul Khand ◽  
Gabriel B. Senay ◽  
Stefanie Kagone ◽  
Gabriel Edwin Lee Parrish

Global food and water insecurity could be serious problems in the upcoming decades with growing demands from the increasing global population and more frequent effect of climatic extremes. As the available water resources are diminishing and facing continuous stress, it is crucial to monitor water demand and water availability to understand the associated water stresses. This study assessed the water stress by applying the water supply stress index (WaSSI) in relation to green (WaSSIG) and blue (WaSSIB) water resources across six major cropland basins including the Mississippi (North America), San Francisco (South America), Nile (Africa), Danube (Europe), Ganges-Brahmaputra (Asia), and Murray-Darling (Australia) for the past 17-years (2003–2019). The WaSSIG and WaSSIB results indicated that the Murray-Darling Basin experienced the most severe (maximum WaSSIG and WaSSIB anomalies) green and blue water stresses and the Mississippi Basin had the least. All basins had both green and blue water stresses for at least 35% (6 out of 17 years) of the study period. The interannual variations in green water stress were driven by both crop water demand and green water supply, whereas the blue water stress variations were primarily driven by blue water supply. The WaSSIG and WaSSIB provided a better understanding of water stress (blue or green) and their drivers (demand or supply driven) across cropland basins. This information can be useful for basin-specific resource mobilization and interventions to ensure food and water security.


HortScience ◽  
1995 ◽  
Vol 30 (4) ◽  
pp. 905D-905
Author(s):  
Thomas R. Clarke ◽  
M. Susan Moran

Water application efficiency can be improved by directly monitoring plant water status rather than depending on soil moisture measurements or modeled ET estimates. Plants receiving sufficient water through their roots have cooler leaves than those that are water-stressed, leading to the development of the Crop Water Stress Index based on hand-held infrared thermometry. Substantial error can occur in partial canopies, however, as exposed hot soil contributes to deceptively warm temperature readings. Mathematically comparing red and near-infrared reflectances provides a measure of vegetative cover, and this information was combined with thermal radiance to give a two-dimensional index capable of detecting water stress even with a low percentage of canopy cover. Thermal, red, and near-infrared images acquired over subsurface drip-irrigated cantaloupe fields demonstrated the method's ability to detect areas with clogged emitters, insufficient irrigation rate, and system water leaks.


2013 ◽  
Vol 118 ◽  
pp. 79-86 ◽  
Author(s):  
N. Agam ◽  
Y. Cohen ◽  
J.A.J. Berni ◽  
V. Alchanatis ◽  
D. Kool ◽  
...  

Agriculture ◽  
2018 ◽  
Vol 8 (7) ◽  
pp. 116 ◽  
Author(s):  
Alessandro Matese ◽  
Salvatore Di Gennaro

High spatial ground resolution and highly flexible and timely control due to reduced planning time are the strengths of unmanned aerial vehicle (UAV) platforms for remote sensing applications. These characteristics make them ideal especially in the medium–small agricultural systems typical of many Italian viticulture areas of excellence. UAV can be equipped with a wide range of sensors useful for several applications. Numerous assessments have been made using several imaging sensors with different flight times. This paper describes the implementation of a multisensor UAV system capable of flying with three sensors simultaneously to perform different monitoring options. The intra-vineyard variability was assessed in terms of characterization of the state of vines vigor using a multispectral camera, leaf temperature with a thermal camera and an innovative approach of missing plants analysis with a high spatial resolution RGB camera. The normalized difference vegetation index (NDVI) values detected in different vigor blocks were compared with shoot weights, obtaining a good regression (R2 = 0.69). The crop water stress index (CWSI) map, produced after canopy pure pixel filtering, highlighted the homogeneous water stress areas. The performance index developed from RGB images shows that the method identified 80% of total missing plants. The applicability of a UAV platform to use RGB, multispectral and thermal sensors was tested for specific purposes in precision viticulture and was demonstrated to be a valuable tool for fast multipurpose monitoring in a vineyard.


Author(s):  
Rodrigo G. Brunini ◽  
José E. P. Turco

ABSTRACT Sugarcane (Saccharum officinarum L.) is a crop of vital importance to Brazil, in the production of sugar and ethanol, power generation and raw materials for various purposes. Strategic information such as topography and canopy temperature can provide management technologies accessible to farmers. The objective of this study was to determine water stress indices for sugarcane in irrigated areas, with different exposures and slopes. The daily water stress index of the plants and the water potential in the soil were evaluated and the production system was analyzed. The experiment was carried out in an “Experimental Watershed”, using six surfaces, two horizontal and the other ones with 20 and 40% North and South exposure slopes. Water stress level was determined by measuring the temperatures of the vegetation cover and the ambient air. Watering was carried out using a drip irrigation system. The results showed that water stress index of sugarcane varies according to exposure and slope of the terrain, while areas whose water stress index was above 5.0 oC had lower yield values.


Sign in / Sign up

Export Citation Format

Share Document