scholarly journals Trisomy 21 increases microtubules and disrupts centriolar satellite localization

2021 ◽  
Author(s):  
Bailey L McCurdy ◽  
Cayla E Jewett ◽  
Alexander J StemmWolf ◽  
Huy Nguyen Duc ◽  
Molishree Joshi ◽  
...  

Trisomy 21, the cause of Down syndrome, causes a 0.5-fold protein increase of the chromosome 21-resident gene Pericentrin (PCNT) and reduces primary cilia formation and signaling. Here we investigate the mechanisms by which PCNT imbalances disrupt cilia. Using isogenic RPE-1 cells with increased chromosome 21 dosage, we find PCNT protein accumulates around the centrosome as a pericentrosomal cluster of enlarged cytoplasmic puncta that localize along and at MT ends. Cytoplasmic PCNT puncta impact the intracellular MT trafficking network required for primary cilia, as the PCNT puncta sequester cargo peripheral to centrosomes in what we call pericentrosomal crowding. The centriolar satellite proteins, PCM1, CEP131 and CEP290, important for ciliogenesis, accumulate at sites of enlarged PCNT puncta in trisomy 21 cells. Reducing PCNT when chromosome 21 ploidy is elevated is sufficient to decrease PCNT puncta, reestablish a normal density of MTs around the centrosome, restore ciliogenesis to wild type levels and decrease pericentrosomal crowding. A transient reduction in MTs also decreases pericentrosomal crowding and partially rescues ciliogenesis in trisomy 21 cells, indicating that increased PCNT leads to defects in the microtubule network deleterious to normal centriolar satellite distribution. We propose that chromosome 21 aneuploidy disrupts MT-dependent intracellular trafficking required for primary cilia.

2021 ◽  
Author(s):  
Cayla E Jewett ◽  
Bailey L McCurdy ◽  
Eileen T O'Toole ◽  
Katherine S Given ◽  
Carrie H Lin ◽  
...  

Primary cilia are signaling organelles essential for development and homeostasis. Loss of primary cilia is lethal, and decreased or defective cilia cause multisystemic conditions called ciliopathies. Down syndrome shares clinical overlap with ciliopathies. We previously showed that trisomy 21 diminishes primary cilia formation and function due to elevated Pericentrin, a centrosome protein encoded on chromosome 21. Pericentrin is mislocalized, creating aggregates that disrupt pericentrosomal trafficking and microtubule organization. Here, we examine the cilia-related molecules and pathways disrupted in trisomy 21 and their in vivo phenotypic relevance. Utilizing ciliogenesis time course experiments, we reveal how Pericentrin, microtubule networks, and components of ciliary vesicles are reorganized for ciliogenesis in euploid cells. Early in ciliogenesis, chromosome 21 polyploidy results in elevated Pericentrin and microtubule networks away from the centrosome that ensnare MyosinVA and EHD1, blocking mother centriole uncapping that is essential for ciliogenesis. Ciliated trisomy 21 cells have persistent trafficking defects that reduce transition zone protein localization, which is critical for Sonic hedgehog signaling. Sonic hedgehog signaling is decreased and anticorrelates with Pericentrin levels in trisomy 21 primary mouse embryonic fibroblasts. Finally, we observe decreased ciliation in vivo. A mouse model of Down syndrome with elevated Pericentrin has fewer primary cilia in cerebellar granule neuron progenitors and thinner external granular layers. Our work reveals that elevated Pericentrin in trisomy 21 disrupts multiple early steps of ciliogenesis and creates persistent trafficking defects in ciliated cells. This pericentrosomal crowding results in signaling defects consistent with the neurological deficits found in individuals with Down syndrome.


2021 ◽  
pp. 1-9
Author(s):  
Sushil Kumar Jaiswal ◽  
Ashok Kumar ◽  
Amit Kumar Rai

Down Syndrome (DS) caused by trisomy 21 results in various congenital and developmental complications in children. It is crucial to cytogenetically diagnose the DS cases early for their proper health management and to reduce the risk of further DS childbirths in mothers. In this study, we performed a cytogenetic analysis of 436 suspected DS cases using karyotyping and fluorescent in situ hybridization. We detected free trisomies (95.3%), robertsonian translocations (2.4%), isochromosomes (0.6%), and mosaics (1.2%). We observed a slightly higher incidence of DS childbirth in younger mothers compared to mothers with advanced age. We compared the somatic aneuploidy in peripheral blood of mothers having DS children (MDS) and control mothers (CM) to identify biomarkers for predicting the risk for DS childbirths. No significant difference was observed. After induced demethylation in peripheral blood cells, we did not observe a significant difference in the frequency of aneuploidy between MDS and CM. In conclusion, free trisomy 21 is the most common type of chromosomal abnormality in DS. A small number of DS cases have translocations and mosaicism of chromosome 21. Additionally, somatic aneuploidy in the peripheral blood from the mother is not an effective marker to predict DS childbirths.


Author(s):  
Loly Anastasya Sinaga ◽  
Dwi Kartika Apriyono ◽  
Masniari Novita

Background: Down Syndrome is a genetic disorder that occurs because of chromosome 21 has three chromosome (trisomy 21). The extra chromosome changes the genetic balance, physical characteristic, intellectual abilities, and physiological body function. Tooth eruption in Down Syndrome children typically delayed in both the timing and sequence of eruption up to two or three years. Objective: To observe the permanent teeth eruption in Down syndrome children at age 10-16 years old, boys and girls in Special Needs School in Jember. Materials and Methods: This research was a descriptive study with 7 subjects. Each subject was examined then calculated teeth that had emerged or functionally eruption with articualting paper. Result and Conclusion:  Both permanent teeth that is still partially erupted tooth (emerged/ EM) and had erupted perfectly (functionally eruption/ FE) delayed in eruption in Down Syndrome boys and girls at age 10-16 years old.


2019 ◽  
Vol 7 (8) ◽  
Author(s):  
Maria Chiara Pelleri ◽  
Elena Cicchini ◽  
Michael B. Petersen ◽  
Lisbeth Tranebjærg ◽  
Teresa Mattina ◽  
...  

Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 1687-1687
Author(s):  
Hideki Makishima ◽  
Hideki Muramatsu ◽  
Asahito Hama ◽  
Ramon V. Tiu ◽  
Yuka Sugimoto ◽  
...  

Abstract Abstract 1687 Genetic alterations including chromosomal translocation, somatic mutation, and gene amplification are thought to play a key role in oncogenesis. Gains of whole or segmental chromosome 21 (Ch21) are observed in many types of myeloid malignancies and are often associated with acute megakaryoblastic leukemia (AMKL). In Down syndrome, transient abnormal myelopoiesis and acute lymphoblastic leukemia can be observed, but the prevalence of AMKL is striking. In rare Down syndrome patients, a subcytogenetic Ch21 minimal amplified region is observed and always found to include ERG as well as the RUNX1 gene locus. Recently, gain of ERG gene copy number has been demonstrated to induce leukemia in mouse models and mutations in RUNX1 have been reported in patients with myeloid malignancies with somatic trisomy 21. The pathogenic gene(s) driving malignant disease in congenital and/or somatic gain of Ch21 are poorly understood. We applied high resolution single nucleotide polymorphism array (SNP-A) to study whether small copy number gains are present on Ch21, which cannot be seen by metaphase cytogenetics. We also tested for potential synergistic karyotypic abnormalities in the patients with gain of Ch21 gene segments. We screened a large cohort of 522 patients with myeloid malignancies by SNP-A platform, and detected 36 events that included whole or partial amplification of Ch21 in 32 cases (6%). The affected length was between 215,063 and 46,944,323 bp and the average was 30,732,002. These include 13 congenital lesions (AMKL evolving in Down syndrome), and 23 somatic alterations. Among the AMKL cohort of 34 cases, gains of Ch21 were observed in 15/25 (60%) juvenile and 2/9 (22%) adult cases. A minimal consensus amplification region was defined from nt38637816 to nt38852879 on Ch21 and this region included ERG. Amplification of ERG was identified in 30/36 of the Ch21 gain lesions studied. Although we sequenced all exons of the ERG gene in all cases with Ch21 gain, no mutation was detected. Based on the possibility that gene amplification leads to increased gene expression, ERG mRNA levels were investigated. CD34+ cells showed the highest ERG expression among hematopoietic cell types. When CD34+ cells from acute myeloid leukemia (AML) patients with somatic trisomy 21, with normal copy of Ch21 and healthy donors were investigated by real time PCR, relative expression of ERG was the highest in trisomy 21 patients among three groups. Based on our previous work and that of others, we tested the mutational status of RUNX1 in the 23 cases with Ch21 amplification that included RUNX1. Mutations were found in 2/23 (9%) accompanied by trisomy 21. No mutation was found in patients with Down syndrome. In one mutant case, a homozygous missense mutation, (L56S) was identified and associated with uniparental trisomy that included RUNX1. The second mutant case (W106L) was in a patient with a 45,XY,-7,i(21)(q10) karyoptype. The mutation was duplicated but was not associated with loss of heterozygosity (LOH). When RUNX1 gene expression in the cases with and without trisomy 21 using CD34 positive bone marrow cells was investigated, no significant difference in relative RUNX1 mRNA levels between trisomy 21 and cases with diploid Ch21 was found. Finally, we evaluated whether additional chromosomal lesions were associated with a gain of Ch21 gene segments. Recurrent losses were detected on chromosome 1, 2, 3, 5, 7, 9, and 17. Deletions of 5q were frequent in the cases with somatic gain of Ch21 (47%; 8/17), while no del5q was detected in the cases with Down syndrome. Conversely, LOH17p (3 uniparental disomies (UPDs) and 2 deletions) was found in both somatic and congenital cases (5/32), with one case of deletion17p associated with a hemizygous p53 mutation. In addition, UPD11q was accompanied by a CBL homozygous mutation in a RAEB case with somatic trisomy 21. Del7q was also observed in both groups (4 in somatic and 3 in congenital cases), including a 7q36.1 microdeletion associated with EZH2 in AMKL with Down syndrome. In sum, our study demonstrates that high resolution SNP-A analysis focused on Ch21 gene segments revealed frequent cryptic somatic gain lesions and a uniparental trisomy. ERG was the sole gene located in the minimally shared gain lesions and is overexpressed in a wild type form in AML cases with somatic trisomy 21. RUNX1 mutations were found in 3 or 2 identical alleles of somatic trisomy 21 cases but are absent in most cases of trisomy 21. Disclosures: No relevant conflicts of interest to declare.


2020 ◽  
Author(s):  
Sunyoung Hwang ◽  
Paola Cavaliere ◽  
Rui Li ◽  
Lihua Julie Zhu ◽  
Noah Dephoure ◽  
...  

AbstractAn extra copy of chromosome 21 causes Down syndrome, the most common genetic disease in humans. The mechanisms by which the aneuploid status of the cell, independent of the identity of the triplicated genes, contributes to the pathologies associated with this syndrome are not well defined. To characterize aneuploidy driven phenotypes in trisomy 21 cells, we performed global transcriptome, proteome, and phenotypic analysis of primary human fibroblasts from individuals with Patau (trisomy 13), Edwards (trisomy 18), or Down syndromes. On average, mRNA and protein levels show a 1.5 fold increase in all trisomies with a subset of proteins enriched for subunits of macromolecular complexes showing signs of post-transcriptional regulation. Furthermore, we show several aneuploidy-associated phenotypes are present in trisomy 21 cells, including lower viability and an increased dependency on the serine-driven lipid biosynthesis pathway to proliferate. Our studies present a novel paradigm to study how aneuploidy contributes to Down syndrome.


Author(s):  
Eva Lana-Elola ◽  
Heather Cater ◽  
Sheona Watson-Scales ◽  
Simon Greenaway ◽  
Jennifer Müller-Winkler ◽  
...  

Down syndrome (DS), trisomy 21, results in many complex phenotypes including cognitive deficits, heart defects and craniofacial alterations. Phenotypes arise from an extra copy of human chromosome 21 (Hsa21) genes. However, these dosage-sensitive causative genes remain unknown. Animal models enable identification of genes and pathological mechanisms. The Dp1Tyb mouse model of DS has an extra copy of 63% of Hsa21-orthologous mouse genes. In order to establish if this model recapitulates DS phenotypes, we comprehensively phenotyped Dp1Tyb mice using 28 tests of different physiological systems and found that 468 out of 1800 parameters were significantly altered. We show that Dp1Tyb mice have wide-ranging DS-like phenotypes including aberrant erythropoiesis and megakaryopoiesis, reduced bone density, craniofacial changes, altered cardiac function, a pre-diabetic state and deficits in memory, locomotion, hearing and sleep. Thus, Dp1Tyb mice are an excellent model for investigating complex DS phenotype-genotype relationships for this common disorder.


2019 ◽  
Author(s):  
Sanjeev Chavan Nayak ◽  
Vegesna Radha

AbstractC3G (RapGEF1), a negative regulator of β-catenin, plays a role in cell differentiation and is essential for early embryonic development in mice. In this study, we identify C3G as a centrosomal protein that regulates centriole division and primary cilia dynamics. C3G is present at the centrosome in interphase as well as mitotic cells, but is absent at the centrioles in differentiated myotubes. It interacts with, and co-localizes with cenexin in the mother centriole. Stable clone of cells depleted of C3G by CRISPR/Cas9 showed reduction in cenexin protein, and presence of supernumerary centrioles. Over-expression of C3G resulted in inhibition of centrosome division in normal and hydroxyurea treated cells. Proportion of ciliated cells is higher, and cilia length longer in C3G knockout cells. C3G inhibits cilia formation and length dependent on its catalytic activity. Unlike wild type cells, C3G depleted cells inefficiently retracted their cilia upon stimulation to reenter the cell cycle, and proliferated slowly, arresting in G1. We conclude that C3G inhibits centriole division and maintains ciliary homeostasis, properties that may be important for its role in embryonic development.Summary statementWe identify C3G as a centrosomal protein and regulator of centriole number, primary cilia length and resorption. These properties are important for its role in embryogenesis, and suggest that mutations in C3G could cause ciliopathies.


Author(s):  
Hana D’Souza ◽  
Jamie Edgin ◽  
Annette Karmiloff-Smith

This is an advance summary of a forthcoming article in the Oxford Research Encyclopedia of Psychology. Please check back later for the full article. Down syndrome (DS; trisomy 21) is the most common genetic disorder associated with intellectual disability. It occurs in one out of every 700 to 1,000 live births. DS is caused by trisomy of human chromosome 21, which results in the altered expression of over 300 genes. This neurodevelopmental syndrome is characterized by distinctive facial dysmorphology and an uneven cognitive phenotype including relative strengths and weaknesses. Relative strengths include visual processing, receptive vocabulary, and social-emotional functioning (though performance in these domains generally falls below the level expected for typically developing individuals). Relative weaknesses include verbal working memory, expressive language, and motor ability. However, the phenotype of individuals with DS is far from homogeneous, and a wide range of individual differences is present at every level of description. On the genetic level, the trisomy can occur through different mechanisms at distinct developmental time points, and the expression of trisomy 21 may be modulated by different genes across individuals. On the level of the brain, individual differences in brain structure and/or function correlate with variation in cognition and behavior, including communication skills. Large individual differences can also be observed on the cognitive level. For example, while some toddlers with DS are nonverbal, others reach expressive vocabulary levels close to those of typically developing children. A wide range of individual differences has also been reported in other areas, including the motor domain, sleep, parent-child interaction, and medical and psychiatric comorbidities. In order to understand a neurodevelopmental syndrome such as DS, it is crucial to consider individual variations at multiple levels of description and the interactions between them over developmental time. A more complex, dynamic view that goes beyond a description of DS as a homogenous group is thus required.


Sign in / Sign up

Export Citation Format

Share Document