scholarly journals A hyper-immunogenic and slow-growing fungal strain induces a murine granulomatous response to cryptococcal infection

2021 ◽  
Author(s):  
Calla L. Telzrow ◽  
Shannon Esher Righi ◽  
Natalia Castro-Lopez ◽  
Althea Campuzano ◽  
Jacob T. Brooks ◽  
...  

Many successful pathogens cause latent infections, remaining dormant within the host for years but retaining the ability to reactivate to cause symptomatic disease. The human opportunistic pathogen Cryptococcus neoformans is a ubiquitous yeast that establishes latent pulmonary infections in immunocompetent individuals upon fungal inhalation from the environment. These latent infections are frequently characterized by granulomas, or foci of chronic inflammation, that contain dormant cryptococcal cells. Immunosuppression causes these granulomas to break down and release viable fungal cells that proliferate, disseminate, and eventually cause lethal cryptococcosis. This course of C. neoformans dormancy and reactivation is understudied due to limited models, as chronic pulmonary granulomas do not typically form in most mouse models of cryptococcal infection. Here, we report that a previously characterized Cryptococcus-specific gene which is required for host-induced cell wall remodeling, MAR1, inhibits murine granuloma formation. Specifically, the mar1Δ loss-of-function mutant strain induces mature pulmonary granulomas at sites of infection dormancy in mice. Our data suggest that the combination of reduced fungal burden and increased immunogenicity of the mar1Δ mutant strain stimulates a host immune response that contains viable fungi within granulomas. Furthermore, we find that the mar1Δ mutant strain has slow growth and hypoxia resistance phenotypes, which may enable fungal persistence within pulmonary granulomas. Together with the conventional primary murine infection model, latent murine infection models will advance our understanding of cryptococcal disease progression and define fungal features important for persistence in the human host.

2005 ◽  
Vol 73 (12) ◽  
pp. 7878-7886 ◽  
Author(s):  
Hae-Sun Park ◽  
P. Patrick Cleary

ABSTRACT C5a peptidase, also called SCPA (surface-bound C5a peptidase), is a surface-bound protein on group A streptococci (GAS), etiologic agents for a variety of human diseases including pharyngitis, impetigo, toxic shock, and necrotizing fasciitis, as well as the postinfection sequelae rheumatic fever and rheumatic heart disease. This protein is highly conserved among different serotypes and is also expressed in human isolates of group B, C, and G streptococci. Human tonsils are the primary reservoirs for GAS, maintaining endemic disease across the globe. We recently reported that GAS preferentially target nasal mucosa-associated lymphoid tissue (NALT) in mice, a tissue functionally analogous to human tonsils. Experiments using a C5a peptidase loss-of-function mutant and an intranasal infection model showed that this protease is required for efficient colonization of NALT. An effective vaccine should prevent infection of this secondary lymphoid tissue; therefore, the potential of anti-SCPA antibodies to protect against streptococcal infection of NALT was investigated. Experiments showed that GAS colonization of NALT was significantly reduced following intranasal immunization of mice with recombinant SCPA protein administered alone or with cholera toxin, whereas a high degree of GAS colonization of NALT was observed in control mice immunized with phosphate-buffered saline only. Moreover, administration of anti-SCPA serum by the intranasal route protected mice against streptococcal infection. These results suggest that intranasal immunization with SCPA would prevent colonization and infection of human tonsils, thereby eliminating potential reservoirs that maintain endemic disease.


Microbiology ◽  
2009 ◽  
Vol 155 (8) ◽  
pp. 2612-2619 ◽  
Author(s):  
Lisa K. Nelson ◽  
Genevieve H. D'Amours ◽  
Kimberley M. Sproule-Willoughby ◽  
Douglas W. Morck ◽  
Howard Ceri

Pseudomonas aeruginosa frequently acts as an opportunistic pathogen of mucosal surfaces; yet, despite causing aggressive prostatitis in some men, its role as a pathogen in the prostate has not been investigated. Consequently, we developed a Ps. aeruginosa infection model in the rat prostate by instilling wild-type (WT) Ps. aeruginosa strain PAO1 into the rat prostate. It was found that Ps. aeruginosa produced acute and chronic infections in this mucosal tissue as determined by bacterial colonization, gross morphology, tissue damage and inflammatory markers. WT strain PAO1 and its isogenic mutant PAO-JP2, in which both the lasI and rhlI quorum-sensing signal systems have been silenced, were compared during both acute and chronic prostate infections. In acute infections, bacterial numbers and inflammatory markers were comparable between WT PA01 and PAO-JP2; however, considerably less tissue damage occurred in infections with PAO-JP2. Chronic infections with PAO-JP2 resulted in reduced bacterial colonization, tissue damage and inflammation as compared to WT PAO1 infections. Therefore, the quorum-sensing lasI and rhlI genes in Ps. aeruginosa affect acute prostate infections, but play a considerably more important role in maintaining chronic infections. We have thus developed a highly reproducible model for the study of Ps. aeruginosa virulence in the prostate.


2017 ◽  
Vol 121 (suppl_1) ◽  
Author(s):  
Marlin Touma ◽  
Xuedong Kang ◽  
Fuying Gao ◽  
Yan Zhao ◽  
Reshma Biniwale ◽  
...  

Background: Fetal to neonatal transition of heart involves major changes in cardiomyocytes (CMC) including proliferative capacity. However, the chamber specific CMC proliferation programs of remain poorly understood. Elucidating the mechanisms involved is critical to develop chamber specific therapies for newborn infants with single ventricle physiology and other congenital heart defects (CHDs). Methods: Transcriptomes of mouse left ventricle (LV) and right ventricle (RV) were analyzed by RNA-seq at postnatal days 0 (P0), P3 and P7. R package and Ingenuity suite were used for weighted gene co-expression network analysis (WGCNA) and gene ontology studies. Mechanistic analysis was conducted using gain and loss of function approaches. Results: Mouse neonatal cardiac transcriptome was mostly affected by developmental stage. WGCNA revealed 5 LV and 8 RV modules that were significantly correlated with maturation stage and highly preserved between both ventricles at P0 and P7. In contrast, P3 specific gene modules exhibited the largest chamber specific variations in cell signaling, involving proliferation in LV and Wnt signaling molecules, including Wnt11, in RV. Importantly, Wnt11 expression significantly decreased in cyanotic CHDs phenotypes and correlated with O2 saturation levels in hypoxemic infants with Tetralogy of Fallot (TOF). Notably, Perinatal hypoxia treatment in mice suppressed Wnt11 expression, induced CMC proliferation, downregulated Rb1 expression and enhanced Rb1 phosphorylation more robustly in RV vs. LV. Remarkably, Wnt11 inactivation was sufficient to induce myocyte proliferation in perinatal mouse heart and reduced Rb1 expression and phosphorylation in primary neonatal CMC. Importantly, downregulated Wnt11 in hypoxemic TOF infantile heart was also associated with Rb1 suppression and inversely correlated with proliferation marker Plk1 in human. Conclusion: Using integrated systems genomic and functional biology analyses of perinatal cardiac transcriptome, we revealed a previously uncharacterized function for Wnt11 in chamber specific growth and cyanotic CHD. Reduction of Wnt11 expression by hypoxia plays a critical role in neonatal CMC proliferation via modulating Rb1 expression and activity.


Open Biology ◽  
2017 ◽  
Vol 7 (9) ◽  
pp. 170029 ◽  
Author(s):  
Ke Wang ◽  
Yi-qiang Chen ◽  
May M. Salido ◽  
Gurjeet S. Kohli ◽  
Jin-liang Kong ◽  
...  

Pseudomonas aeruginosa is an opportunistic pathogen that causes severe airway infections in humans. These infections are usually difficult to treat and associated with high mortality rates. While colonizing the human airways, P. aeruginosa could accumulate genetic mutations that often lead to its better adaptability to the host environment. Understanding these evolutionary traits may provide important clues for the development of effective therapies to treat P. aeruginosa infections. In this study, 25 P. aeruginosa isolates were longitudinally sampled from the airways of four ventilator-associated pneumonia (VAP) patients. Pacbio and Illumina sequencing were used to analyse the in vivo evolutionary trajectories of these isolates. Our analysis showed that positive selection dominantly shaped P. aeruginosa genomes during VAP infections and led to three convergent evolution events, including loss-of-function mutations of lasR and mpl , and a pyoverdine-deficient phenotype. Specifically, lasR encodes one of the major transcriptional regulators in quorum sensing, whereas mpl encodes an enzyme responsible for recycling cell wall peptidoglycan. We also found that P. aeruginosa isolated at late stages of VAP infections produce less elastase and are less virulent in vivo than their earlier isolated counterparts, suggesting the short-term in vivo evolution of P. aeruginosa leads to attenuated virulence.


2021 ◽  
Author(s):  
Renato E. R. S. Santos ◽  
Waldir P. da Silva Júnior ◽  
Simone A. Harrison ◽  
Eric P Skaar ◽  
Walter J. Chazin ◽  
...  

Chromobacterium violaceum is a ubiquitous environmental bacterium that causes sporadic life-threatening infections in humans. How C. violaceum acquires zinc to colonize environmental and host niches is unknown. In this work, we demonstrated that C. violaceum employs the zinc uptake system ZnuABC to overcome zinc limitation in the host, ensuring the zinc supply for several physiological demands. Our data indicated that the C. violaceum ZnuABC transporter is encoded in a zur-CV_RS15045-CV_RS15040-znuCBA operon. This operon was repressed by the zinc uptake regulator Zur and derepressed in the presence of the host protein calprotectin (CP) and the synthetic metal chelator EDTA. A ΔznuCBA mutant strain showed impaired growth under these zinc-chelated conditions. Moreover, the deletion of znuCBA provoked a reduction in violacein production, swimming motility, biofilm formation, and bacterial competition. Remarkably, the ΔznuCBA mutant strain was highly attenuated for virulence in an in vivo mouse infection model and showed a low capacity to colonize the liver, grow in the presence of CP, and resist neutrophil killing. Overall, our findings demonstrate that ZnuABC is essential for C. violaceum virulence, contributing to subvert the zinc-based host nutritional immunity.


2000 ◽  
Vol 44 (6) ◽  
pp. 1544-1548 ◽  
Author(s):  
A. I. Aller ◽  
E. Martin-Mazuelos ◽  
F. Lozano ◽  
J. Gomez-Mateos ◽  
L. Steele-Moore ◽  
...  

ABSTRACT We have correlated the in vitro results of testing the susceptibility of Cryptococcus neoformans to fluconazole with the clinical outcome after fluconazole maintenance therapy in patients with AIDS-associated cryptococcal disease. A total of 28 isolates of C. neoformans from 25 patients (24 AIDS patients) were tested. The MICs were determined by the broth microdilution technique by following the modified guidelines described in National Committee for Clinical Standards (NCCLS) document M27-A, e.g., use of yeast nitrogen base medium and a final inoculum of 104 CFU/ml. The fluconazole MIC at which 50% of isolates are inhibited (MIC50) and MIC90, obtained spectrophotometrically after 48 h of incubation, were 4 and 16 μg/ml, respectively. Of the 25 patients studied, 4 died of active cryptococcal disease and 2 died of other causes. Therapeutic failure was observed in five patients who were infected with isolates for which fluconazole MICs were ≥16 μg/ml. Four of these patients had previously had oropharyngeal candidiasis (OPC); three had previously had episodes of cryptococcal infection, and all five treatment failure patients had high cryptococcal antigen titers in either serum or cerebrospinal fluid (titers, >1:4,000). Although 14 of the 18 patients who responded to fluconazole therapy had previously had OPC infections, they each had only a single episode of cryptococcal infection. It appears that the clinical outcome after fluconazole maintenance therapy may be better when the infecting C. neoformans strain is inhibited by lower concentrations of fluconazole for eradication (MICs, <16 μg/ml) than when the patients are infected with strains that require higher fluconazole concentrations (MICs, ≥16 μg/ml). These findings also suggest that the MICs determined by the modified NCCLS microdilution method can be potential predictors of the clinical response to fluconazole therapy and may aid in the identification of patients who will not respond to fluconazole therapy.


2021 ◽  
Author(s):  
Michael John Dill Renouf

Inflammatory bowel disease (IBD) is a chronic condition increasing in prevalence throughout the western world and in developing countries. Adherent-invasive Escherichia coli (AIEC) are an opportunistic pathogen associated with IBD. Well-characterized genetic risk factors for IBD include mutations in genes associated with host-cell autophagy. A phenotype of interest in AIEC pathogenesis is survival within host macrophages. Intracellular survival of AIEC strains has been correlated with existing virulence factors but no single factor has been identified to explain this behaviour. In this thesis, infections of RAW264.7 macrophages with AIEC strains from diverse sources demonstrates increased frequency of both bacterial uptake and intracellular survival in disease-associated strains. A secondary infection model reveals the effect of primary AIEC infection on downstream macrophage function and a novel phenotype was identified in the disease-associated strain HM605. Co-localization using fluorescence microscopy shows changes in intracellular trafficking of HM605. This work aims to provide insight into one bacterial phenotype that contributes to the development of disease


2009 ◽  
Vol 191 (18) ◽  
pp. 5785-5792 ◽  
Author(s):  
Rashmi Gupta ◽  
Timothy R. Gobble ◽  
Martin Schuster

ABSTRACT The opportunistic pathogen Pseudomonas aeruginosa utilizes two interconnected acyl-homoserine lactone quorum-sensing (acyl-HSL QS) systems, LasRI and RhlRI, to regulate the expression of hundreds of genes. The QS circuitry itself is integrated into a complex network of regulation by other factors. However, our understanding of this network is still unlikely to be complete, as a comprehensive, saturating approach to identifying regulatory components has never been attempted. Here, we utilized a nonredundant P. aeruginosa PA14 transposon library to identify additional genes that regulate QS at the level of LasRI/RhlRI. We initially screened all 5,459 mutants for loss of function in one QS-controlled trait (skim milk proteolysis) and then rescreened attenuated candidates for defects in other QS phenotypes (LasA protease, rhamnolipid, and pyocyanin production) to exclude mutants defective in functions other than QS. We identified several known and novel genes, but only two novel genes, gidA and pcnB, affected all of the traits assayed. We characterized gidA, which exhibited the most striking QS phenotypes, further. This gene is predicted to encode a conserved flavin adenine dinucleotide-binding protein involved in tRNA modification. Inactivation of the gene primarily affected rhlR-dependent QS phenotypes such as LasA, pyocyanin, and rhamnolipid production. GidA affected RhlR protein but not transcript levels and also had no impact on LasR and acyl-HSL production. Overexpression of rhlR in a gidA mutant partially restored QS-dependent phenotypes. Taken together, these results indicate that GidA selectively controls QS gene expression posttranscriptionally via RhlR-dependent and -independent pathways.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. SCI-33-SCI-33 ◽  
Author(s):  
Ari M. Melnick ◽  
Ross L Levine ◽  
Maria E Figueroa ◽  
Craig B. Thompson ◽  
Omar Abdel-Wahab

Abstract Abstract SCI-33 Epigenetic deregulation of gene expression through aberrant DNA methylation or histone modification plays an important role in the malignant transformation of hematopoietic cells. In particular, acute myeloid leukemias (AMLs) can be classified according to epigenetic signatures affecting DNA methylation or histone modifications affecting specific gene sets. Heterozygous somatic mutations in the loci encoding isocitrate dehydrogenase 1 and 2 (IDH1/2) occur in ∼20% of AMLs and are accompanied by global DNA hypermethylation and hypermethylation and silencing of a number of specific gene promoters. IDH1/2 mutations are almost completely mutually exclusive with somatic loss-of-function mutations in TET2, which hydroxylates methylcytosine (mCpG). DNA hydroxymethylation can function as an intermediate step in mCpG demethylation. TET2 mutant de novo AMLs also display global and promoter specific hypermethylation partially overlapping with IDH1/2 mutant cases. Mutations in the IDH1/2 loci result in a neomorphic enzyme that generates the aberrant oncometabolite 2-hydroxyglutarate (2HG) using α-ketoglutarate (αKG) as a substrate. 2HG can disrupt the activity of enzymes that use αKG as a cofactor, including TET2 and the jumonji family of histone demethylases. Expression of mutant IDH isoforms inhibits TET2 hydroxymethylation and jumonji histone demethylase functions. IDH and TET2 mutant AMLs accordingly exhibit reduced levels of hydroxymethylcytosine and a trend towards increased histone methylation. Mutant IDH or TET2 loss of function causes differentiation blockade and expansion of hematopoietic stem cells and TET2 knockout results in a myeloproliferative phenotype in mice. Hydroxymethylcytosine is in abundance in hematopoietic stem cells and displays specific distribution patterns, yet the function of this covalent modification is not fully understood. Recent data link TET2 with the function of cytosine deaminases as a pathway towards DNA demethylation, which has implications as well for B cell lymphomas and CML lymphoid blast crisis, which are linked with the actions of activation induced cytosine deaminase. Altogether, the available data implicate mutations in IDH1/2 and TET2 in promoting malignant transformation in several tissues, by disrupting epigenomics programming and altering gene expression patterning. Disclosures: Thompson: Agios Pharmaceuticals: Consultancy.


Sign in / Sign up

Export Citation Format

Share Document