scholarly journals Investigating the causes of stimulus-evoked changes in cone reflectance using a combined adaptive optics SLO-OCT system

2021 ◽  
Author(s):  
Mehdi Azimipour ◽  
Denise Valente ◽  
John S Werner ◽  
Robert J Zawadzki ◽  
Ravi S Jonnal

In vivo functional imaging of human photoreceptors is an emerging field, with compelling potential applications in basic science, translational research, and clinical management of ophthalmic disease. Measurements of light-evoked changes in the photoreceptors has been successfully demonstrated using adaptive optics (AO) coherent flood illumination (CFI), AO scanning light ophthalmoscopy (SLO), AO optical coherence tomography (OCT), and full-field OCT with digital AO (dAO). While the optical principles and data processing of these systems differ greatly, and while these differences manifest in the resulting measurements, we believe that the underlying physiological processes involved in each of those techniques are likely the same. AO CFI and AOSLO systems are more widely used than OCT systems. However, those systems produce only two-dimensional images and so, less can be said about the anatomical and physiological origins of the observed signal. OCT signal, on the other hand, provides 3D imaging but at a cost of high volume of data, making it impractical to clinical purposes. In light of this, we employed a combined AO OCT SLO system with point for point correspondence between the OCT and SLO images to measure functional responses simultaneously with both and investigate SLO retinal functional biomarkers based on OCT response. The resulting SLO images reveal reflectance changes in the cones which are consistent with those previously reported using AO CFI and AO SLO. The resulting OCT volumes show phase changes in the cone outer segment (OS) consistent with those previously reported by us and others. We recapitulate a model of the cone OS previously proposed to explain AO-CFI reflectance changes, and show how this model can be used to predict the signal in AO SLO. The limitations of the model is also discussed in this manuscript.

2001 ◽  
Vol 89 (4-5) ◽  
Author(s):  
H. Herzog

Nuclear medicine methods permit the visualisation of a variety of metabolic and physiological processes all over the body. Although planar scintigraphy has been found useful for many questions, detailed spatial information about the diseased organ can only be obtained with tomographic methods. Dependent on the radionuclide involved, two different tomographic procedures are available: single photon emission computed tomography (SPECT) and positron emission tomography (PET). The first part of this paper describes shortly the historical development of these methods as well as their technical and methodological basics. To elucidate the large variety of possible applications, an overview of SPECT and PET procedures utilised in research as well as in clinical practice are presented. Furthermore, both methods are compared and their individual advantages are pointed out.


2018 ◽  
Author(s):  
Mehdi Azimipour ◽  
Justin V. Migacz ◽  
Robert J. Zawadzki ◽  
John S. Werner ◽  
Ravi S. Jonnal

AbstractObjective optical assessment of photoreceptor function may permit earlier diagnosis of retinal disease than current methods such as perimetry, electrophysiology, and clinical imaging. In this work, we describe an adaptive optics (AO) optical coherence tomography (OCT) system designed to measure functional responses of single cones to visible stimuli. The OCT subsystem consisted of a raster-scanning Fourier-domain mode-locked laser that acquires A-scans at 1.64MHz with a center wavelength of 1063nm, and an AO subsystem providing diffraction-limited imaging. Analysis of serial volumetric images revealed phase changes of cone photoreceptors consistent with outer segment elongation and proportional to stimulus intensity, as well as other morphological changes in the outer segment and retinal pigment epithelium.


Crustaceana ◽  
2021 ◽  
Vol 94 (9) ◽  
pp. 1085-1101
Author(s):  
Xilei Li ◽  
Tiantian Chen ◽  
Ruihan Xu ◽  
Qiming Xie ◽  
Shiping Su ◽  
...  

Abstract In crustaceans, methyl farnesoate (MF) is an important sesquiterpenoid to regulate many physiological processes, especially reproduction and ovarian maturation. In this study, a 1919 bp cDNA of carboxylesterases (Es-CXE6) with some conserved motifs of the CXE multifunctional enzyme family was cloned from Eriocheir sinensis. Tissue and stage-specific expression results suggested that Es-CXE6 expression in hepatopancreas was highest and associated with the haemolymph MF titer. In vitro and in vivo experiments showed that Es-CXE6 expression was significantly upregulated by MF treatment in the hepatopancreas but not in the ovary. Furthermore, an eyestalk ablation experiment showed that Es-CXE6 expression was significantly upregulated on days 1 and 3 post eyestalk ablation in the hepatopancreas. Together, these results indicate that Es-CXE6 may degrade MF in the hepatopancreas in E. sinensis. Our results offer a potential approach to maintain the MF titer at appropriate levels, which has potential applications in crab aquaculture.


1986 ◽  
Vol 56 (01) ◽  
pp. 023-027 ◽  
Author(s):  
C J Jen ◽  
L V McIntire

SummaryWhether platelet microtubules are involved in clot retraction/ contraction has been controversial. To address this question we have simultaneously measured two clotting parameters, clot structural rigidity and isometric contractile force, using a rheological technique. For recalcified PRP clots these two parameters began rising together at about 15 min after CaCl2 addition. In the concentration range affecting microtubule organization in platelets, colchicine, vinca alkaloids and taxol demonstrated insignificant effects on both clotting parameters of a recalcified PRP clot. For PRP clots induced by adding small amounts of exogenous thrombin, the kinetic curves of clot rigidity were biphasic and without a lag time. The first phase corresponded to a platelet-independent network forming process, while the second phase corresponded to a platelet-dependent process. These PRP clots began generating contractile force at the onset of the second phase. For both rigidity and force parameters, only the second phase of clotting kinetics was retarded by microtubule affecting reagents. When PRP samples were clotted by adding a mixture of CaCl2 and thrombin, the second phase clotting was accelerated and became superimposed on the first phase. The inhibitory effects of micro tubule affecting reagents became less pronounced. Thrombin clotting of a two-component system (washed platelets/ purified fibrinogen) was also biphasic, with the second phase being microtubule-dependent. In conclusion, platelet microtubules are important in PRP clotted with low concentrations of thrombin, during which fibrin network formation precedes platelet-fibrin interactions. On the other hand they are unimportant if a PRP clot is induced by recalcification, during which the fibrin network is constructed in the presence of platelet-fibrin interactions. The latter is likely to be more analogous to physiological processes in vivo.


2005 ◽  
Vol 2 (2) ◽  
pp. 133-140 ◽  
Author(s):  
D. Mietchen ◽  
H. Keupp ◽  
B. Manz ◽  
F. Volke

Abstract. For more than a decade, Magnetic Resonance Imaging (MRI) has been routinely employed in clinical diagnostics because it allows non-invasive studies of anatomical structures and physiological processes in vivo and to differentiate between healthy and pathological states, particularly of soft tissue. Here, we demonstrate that MRI can likewise be applied to fossilized biological samples and help in elucidating paleopathological and paleoecological questions: Five anomalous guards of Jurassic and Cretaceous belemnites are presented along with putative paleopathological diagnoses directly derived from 3D MR images with microscopic resolution. Syn vivo deformities of both the mineralized internal rostrum and the surrounding former soft tissue can be traced back in part to traumatic events of predator-prey-interactions, and partly to parasitism. Besides, evidence is presented that the frequently observed anomalous apical collar might be indicative of an inflammatory disease. These findings highlight the potential of Magnetic Resonance techniques for further paleontological applications.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yangfan Xu ◽  
Xianqun Fan ◽  
Yang Hu

AbstractEnzyme-catalyzed proximity labeling (PL) combined with mass spectrometry (MS) has emerged as a revolutionary approach to reveal the protein-protein interaction networks, dissect complex biological processes, and characterize the subcellular proteome in a more physiological setting than before. The enzymatic tags are being upgraded to improve temporal and spatial resolution and obtain faster catalytic dynamics and higher catalytic efficiency. In vivo application of PL integrated with other state of the art techniques has recently been adapted in live animals and plants, allowing questions to be addressed that were previously inaccessible. It is timely to summarize the current state of PL-dependent interactome studies and their potential applications. We will focus on in vivo uses of newer versions of PL and highlight critical considerations for successful in vivo PL experiments that will provide novel insights into the protein interactome in the context of human diseases.


Polymers ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1566
Author(s):  
Oliver J. Pemble ◽  
Maria Bardosova ◽  
Ian M. Povey ◽  
Martyn E. Pemble

Chitosan-based films have a diverse range of potential applications but are currently limited in terms of commercial use due to a lack of methods specifically designed to produce thin films in high volumes. To address this limitation directly, hydrogels prepared from chitosan, chitosan-tetraethoxy silane, also known as tetraethyl orthosilicate (TEOS) and chitosan-glutaraldehyde have been used to prepare continuous thin films using a slot-die technique which is described in detail. By way of preliminary analysis of the resulting films for comparison purposes with films made by other methods, the mechanical strength of the films produced was assessed. It was found that as expected, the hybrid films made with TEOS and glutaraldehyde both show a higher yield strength than the films made with chitosan alone. In all cases, the mechanical properties of the films were found to compare very favorably with similar measurements reported in the literature. In order to assess the possible influence of the direction in which the hydrogel passes through the slot-die on the mechanical properties of the films, testing was performed on plain chitosan samples cut in a direction parallel to the direction of travel and perpendicular to this direction. It was found that there was no evidence of any mechanical anisotropy induced by the slot die process. The examples presented here serve to illustrate how the slot-die approach may be used to create high-volume, high-area chitosan-based films cheaply and rapidly. It is suggested that an approach of the type described here may facilitate the use of chitosan-based films for a wide range of important applications.


2021 ◽  
Vol 22 (15) ◽  
pp. 8106
Author(s):  
Tianming Song ◽  
Yawei Qu ◽  
Zhe Ren ◽  
Shuang Yu ◽  
Mingjian Sun ◽  
...  

Despite the numerous available treatments for cancer, many patients succumb to side effects and reoccurrence. Zinc oxide (ZnO) quantum dots (QDs) are inexpensive inorganic nanomaterials with potential applications in photodynamic therapy. To verify the photoluminescence of ZnO QDs and determine their inhibitory effect on tumors, we synthesized and characterized ZnO QDs modified with polyvinylpyrrolidone. The photoluminescent properties and reactive oxygen species levels of these ZnO/PVP QDs were also measured. Finally, in vitro and in vivo experiments were performed to test their photodynamic therapeutic effects in SW480 cancer cells and female nude mice. Our results indicate that the ZnO QDs had good photoluminescence and exerted an obvious inhibitory effect on SW480 tumor cells. These findings illustrate the potential applications of ZnO QDs in the fields of photoluminescence and photodynamic therapy.


Sign in / Sign up

Export Citation Format

Share Document