scholarly journals Regulation of DNA (de)methylation positively impacts seed germination during seed development under heat stress

2021 ◽  
Author(s):  
Jaiana Malabarba ◽  
David Windels ◽  
Wenjia Xu ◽  
Jerome Verdier

AbstractSeed development needs the coordination of multiple molecular mechanisms to promote correct tissue development, seed filling and the acquisition of germination capacity, desiccation tolerance, longevity and dormancy. Heat stress can negatively impact these processes and upon the increasing of global mean temperatures, global food security is threatened. Here, we explored the impact of heat stress on seed physiology, morphology, gene expression and methylation on three stages of seed development. Notably, Arabidopsis Col-0 plants under heat stress presented a decrease in germination capacity and also a decrease in longevity. We observed that upon mild stress, gene expression and DNA methylation were moderately affected. Nevertheless, upon severe heat stress during seed development, gene expression was intensively modified, promoting heat stress response mechanisms, including the activation of ABA pathway. By analyzing candidate epigenetic marks using mutants’ physiological assays, we observed that the lack of DNA demethylation by ROS1 gene impaired seed germination by affecting germination-related genes expression. On the other hand, we also observed that upon severe stress, a large proportion of differentially methylated regions (DMRs) were located in promoters and gene sequences of germination-related genes. To conclude, our results indicate that DNA (de)methylation could be a key regulatory process to ensure proper seed germination of seeds produced under heat stress.Graphic Abstract

Genes ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 457
Author(s):  
Jaiana Malabarba ◽  
David Windels ◽  
Wenjia Xu ◽  
Jerome Verdier

Seed development needs the coordination of multiple molecular mechanisms to promote correct tissue development, seed filling, and the acquisition of germination capacity, desiccation tolerance, longevity, and dormancy. Heat stress can negatively impact these processes and upon the increase of global mean temperatures, global food security is threatened. Here, we explored the impact of heat stress on seed physiology, morphology, gene expression, and methylation on three stages of seed development. Notably, Arabidopsis Col-0 plants under heat stress presented a decrease in germination capacity as well as a decrease in longevity. We observed that upon mild stress, gene expression and DNA methylation were moderately affected. Nevertheless, upon severe heat stress during seed development, gene expression was intensively modified, promoting heat stress response mechanisms including the activation of the ABA pathway. By analyzing candidate epigenetic markers using the mutants’ physiological assays, we observed that the lack of DNA demethylation by the ROS1 gene impaired seed germination by affecting germination-related gene expression. On the other hand, we also observed that upon severe stress, a large proportion of differentially methylated regions (DMRs) were located in the promoters and gene sequences of germination-related genes. To conclude, our results indicate that DNA (de)methylation could be a key regulatory process to ensure proper seed germination of seeds produced under heat stress.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Federico Tinarelli ◽  
Elena Ivanova ◽  
Ilaria Colombi ◽  
Erica Barini ◽  
Edoardo Balzani ◽  
...  

Abstract Background DNA methylation has emerged as an important epigenetic regulator of brain processes, including circadian rhythms. However, how DNA methylation intervenes between environmental signals, such as light entrainment, and the transcriptional and translational molecular mechanisms of the cellular clock is currently unknown. Here, we studied the after-hours mice, which have a point mutation in the Fbxl3 gene and a lengthened circadian period. Methods In this study, we used a combination of in vivo, ex vivo and in vitro approaches. We measured retinal responses in Afh animals and we have run reduced representation bisulphite sequencing (RRBS), pyrosequencing and gene expression analysis in a variety of brain tissues ex vivo. In vitro, we used primary neuronal cultures combined to micro electrode array (MEA) technology and gene expression. Results We observed functional impairments in mutant neuronal networks, and a reduction in the retinal responses to light-dependent stimuli. We detected abnormalities in the expression of photoreceptive melanopsin (OPN4). Furthermore, we identified alterations in the DNA methylation pathways throughout the retinohypothalamic tract terminals and links between the transcription factor Rev-Erbα and Fbxl3. Conclusions The results of this study, primarily represent a contribution towards an understanding of electrophysiological and molecular phenotypic responses to external stimuli in the Afh model. Moreover, as DNA methylation has recently emerged as a new regulator of neuronal networks with important consequences for circadian behaviour, we discuss the impact of the Afh mutation on the epigenetic landscape of circadian biology.


Biomolecules ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 498
Author(s):  
Mojdeh Khajehlandi ◽  
Lotfali Bolboli ◽  
Marefat Siahkuhian ◽  
Mohammad Rami ◽  
Mohammadreza Tabandeh ◽  
...  

Exercise can ameliorate cardiovascular dysfunctions in the diabetes condition, but its precise molecular mechanisms have not been entirely understood. The aim of the present study was to determine the impact of endurance training on expression of angiogenesis-related genes in cardiac tissue of diabetic rats. Thirty adults male Wistar rats were randomly divided into three groups (N = 10) including diabetic training (DT), sedentary diabetes (SD), and sedentary healthy (SH), in which diabetes was induced by a single dose of streptozotocin (50 mg/kg). Endurance training (ET) with moderate-intensity was performed on a motorized treadmill for six weeks. Training duration and treadmill speed were increased during five weeks, but they were kept constant at the final week, and slope was zero at all stages. Real-time polymerase chain reaction (RT-PCR) analysis was used to measure the expression of myocyte enhancer factor-2C (MEF2C), histone deacetylase-4 (HDAC4) and Calmodulin-dependent protein kinase II (CaMKII) in cardiac tissues of the rats. Our results demonstrated that six weeks of ET increased gene expression of MEF2C significantly (p < 0.05), and caused a significant reduction in HDAC4 and CaMKII gene expression in the DT rats compared to the SD rats (p < 0.05). We concluded that moderate-intensity ET could play a critical role in ameliorating cardiovascular dysfunction in a diabetes condition by regulating the expression of some angiogenesis-related genes in cardiac tissues.


2016 ◽  
Vol 2016 ◽  
pp. 1-15 ◽  
Author(s):  
Ben Holmes ◽  
Seung Ho Jung ◽  
Jing Lu ◽  
Jessica A. Wagner ◽  
Liudmilla Rubbi ◽  
...  

Transcranial direct current stimulation (tDCS) has been shown to modulate neuroplasticity. Beneficial effects are observed in patients with psychiatric disorders and enhancement of brain performance in healthy individuals has been observed following tDCS. However, few studies have attempted to elucidate the underlying molecular mechanisms of tDCS in the brain. This study was conducted to assess the impact of tDCS on gene expression within the rat cerebral cortex. Anodal tDCS was applied at 3 different intensities followed by RNA-sequencing and analysis. In each current intensity, approximately 1,000 genes demonstrated statistically significant differences compared to the sham group. A variety of functional pathways, biological processes, and molecular categories were found to be modified by tDCS. The impact of tDCS on gene expression was dependent on current intensity. Results show that inflammatory pathways, antidepressant-related pathways (GTP signaling, calcium ion binding, and transmembrane/signal peptide pathways), and receptor signaling pathways (serotonergic, adrenergic, GABAergic, dopaminergic, and glutamate) were most affected. Of the gene expression profiles induced by tDCS, some changes were observed across multiple current intensities while other changes were unique to a single stimulation intensity. This study demonstrates that tDCS can modify the expression profile of various genes in the cerebral cortex and that these tDCS-induced alterations are dependent on the current intensity applied.


Animals ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 474 ◽  
Author(s):  
Elzbieta Pietrzak ◽  
Aleksandra Dunislawska ◽  
Maria Siwek ◽  
Marco Zampiga ◽  
Federico Sirri ◽  
...  

Galactooligosaccharides (GOS) that are delivered in ovo improve intestinal microbiota composition and mitigate the negative effects of heat stress in broiler chickens. Hubbard hybrids are slow-growing chickens with a high resistance to heat. In this paper, we determined the impact of GOS delivered in ovo on slow-growing chickens that are challenged with heat. The experiment was a 2 × 2 × 2 factorial design. On day 12 of incubation, GOS (3.5 mg/egg) was delivered into the egg (n = 300). Controls (C) were mock-injected with physiological saline (n = 300). After hatching, the GOS and C groups were split into thermal groups: thermoneutral (TN) and heat stress (HS). HS (30 °C) lasted for 14 days (days 36–50 post-hatching). The spleen (n = 8) was sampled after acute (8.5 h) and chronic (14 days) HS. The gene expression of immune-related (IL-2, IL-4, IL-6, IL-10, IL-12p40, and IL-17) and stress-related genes (HSP25, HSP90AA1, BAG3, CAT, and SOD) was detected with RT-qPCR. Chronic HS up-regulated the expression of the genes: IL-10, IL-12p40, SOD (p < 0.05), and CAT (p < 0.01). GOS delivered in ovo down-regulated IL-4 (acute p < 0.001; chronic p < 0.01), IL-12p40, CAT and SOD (chronic p < 0.05). The obtained results suggest that slow-growing hybrids are resistant to acute heat and tolerant to chronic heat, which can be supported with in ovo GOS administration.


2020 ◽  
Vol 111 (6) ◽  
pp. 539-547
Author(s):  
Sumaetee Tangwancharoen ◽  
Brice X Semmens ◽  
Ronald S Burton

Abstract Geographic variation in environmental temperature can select for local adaptation among conspecific populations. Divergence in gene expression across the transcriptome is a key mechanism for evolution of local thermal adaptation in many systems, yet the genetic mechanisms underlying this regulatory evolution remain poorly understood. Here we examine gene expression in 2 locally adapted Tigriopus californicus populations (heat tolerant San Diego, SD, and less tolerant Santa Cruz, SC) and their F1 hybrids during acute heat stress response. Allele-specific expression (ASE) in F1 hybrids was used to determine cis-regulatory divergence. We found that the number of genes showing significant allelic imbalance increased under heat stress compared to unstressed controls. This suggests that there is significant population divergence in cis-regulatory elements underlying heat stress response. Specifically, the number of genes showing an excess of transcripts from the more thermal tolerant (SD) population increased with heat stress while that number of genes with an SC excess was similar in both treatments. Inheritance patterns of gene expression also revealed that genes displaying SD-dominant expression phenotypes increase in number in response to heat stress; that is, across loci, gene expression in F1’s following heat stress showed more similarity to SD than SC, a pattern that was absent in the control treatment. The observed patterns of ASE and inheritance of gene expression provide insight into the complex processes underlying local adaptation and thermal stress response.


2018 ◽  
Vol 19 (12) ◽  
pp. 4055 ◽  
Author(s):  
Fatma Zehra Kadayifci ◽  
Shasha Zheng ◽  
Yuan-Xiang Pan

DNA methylation is a vital modification process in the control of genetic information, which contributes to the epigenetics by regulating gene expression without changing the DNA sequence. Abnormal DNA methylation—both hypomethylation and hypermethylation—has been associated with improper gene expression, leading to several disorders. Two types of risk factors can alter the epigenetic regulation of methylation pathways: genetic factors and modifiable factors. Nutrition is one of the strongest modifiable factors, which plays a direct role in DNA methylation pathways. Large numbers of studies have investigated the effects of nutrition on DNA methylation pathways, but relatively few have focused on the biochemical mechanisms. Understanding the biological mechanisms is essential for clarifying how nutrients function in epigenetics. It is believed that nutrition affects the epigenetic regulations of DNA methylation in several possible epigenetic pathways: mainly, by altering the substrates and cofactors that are necessary for proper DNA methylation; additionally, by changing the activity of enzymes regulating the one-carbon cycle; and, lastly, through there being an epigenetic role in several possible mechanisms related to DNA demethylation activity. The aim of this article is to review the potential underlying biochemical mechanisms that are related to diet modifications in DNA methylation and demethylation.


2003 ◽  
Vol 278 (32) ◽  
pp. 30328-30338 ◽  
Author(s):  
L. Ashley Cowart ◽  
Yasuo Okamoto ◽  
Francisco R. Pinto ◽  
Jason L. Gandy ◽  
Jonas S. Almeida ◽  
...  

2019 ◽  
Vol 37 (15_suppl) ◽  
pp. 3535-3535
Author(s):  
Shehara Ramyalini Mendis ◽  
James Thomas Topham ◽  
Emma Titmuss ◽  
Laura Williamson ◽  
Erin D. Pleasance ◽  
...  

3535 Background: Endogenous retrovirus (ERV) elements represent genomic footprints of ancestral retroviral infections within the human genome. Previous studies have demonstrated increases in ERV mRNA as a result of DNA hypomethylation, and ERV transcription has been associated with increased immunogenicity in metastatic renal cell carcinoma. We performed comprehensive bioinformatics analysis of ERV transcription in metastatic colorectal carcinoma (mCRC), to identify novel links between ERV transcription, epigenetic dysregulation and immunogenicity in metastatic colorectal carcinoma (mCRC). Methods: Tumour samples from 63 patients with mCRC were subjected to RNA sequencing as part of the Personalized OncoGenomics program (POG; NCT02155621) at BC Cancer. Patients were enrolled between 07/2012-07/2017. ERV transcription was quantified across 702,533 distinct loci. Tumors were classified ERV-hi if their total ERV expression (RPKM) was greater than the mean across all samples. High antiviral gene expression tumors (AVG-hi) were designated as having a mean expression of IFIH1, DDX58, TLR3, TANK, TBKBP1, TBK1, IRF3 and IRF7 that was greater than the mean across all samples. All pairwise comparisons of gene expression were subjected to multiple hypothesis correction. Results: Median age was 59 years, with 34 (54%) male and 1 tumor microsatellite unstable. ERV-hi tumors showed increased expression of DNA demethylators TET2 ( q=0.0045) and TET3 ( q<0.0001). Significant overlap existed between ERV-hi and AVG-hi tumors (18/27, p=0.016). Tumors both ERV-hi and AVG-hi trended towards increased PD-L1 expression (p=0.055) and showed a significant increase in survival compared to tumors with high antiviral expression in the absence of high ERV transcription (p=0.0043). Conclusions: Our results suggest DNA demethylation drives increased ERV transcription and ERV-associated immunogenicity in mCRC. Moreover, we provide novel insight into the impact of ERV transcription on the biology of mCRC, highlighting ERV transcription as a potential biomarker and target for precision immunotherapy. Clinical trial information: NCT02155621.


Sign in / Sign up

Export Citation Format

Share Document