scholarly journals PEPc-mediated CO2 assimilation provides carbons to gluconeogenesis and the TCA cycle in both dark-exposed and illuminated guard cells

2021 ◽  
Author(s):  
Valeria F. Lima ◽  
David B. Medeiros ◽  
Silvio A. Candido-Sobrinho ◽  
Francisco B.S. Freire ◽  
Nicole P. Porto ◽  
...  

Evidence suggests that guard cells have higher rate of phosphoenolpyruvate carboxylase (PEPc)-mediated dark CO2 assimilation than mesophyll cells. However, it is unknown which metabolic pathways are activated following dark CO2 assimilation in guard cells. Furthermore, it remains unclear how the metabolic fluxes throughout the tricarboxylic acid (TCA) cycle and associated pathways are regulated in illuminated guard cells. Here we used 13C-HCO3 labelling of tobacco guard cells harvested under continuous dark or during the dark-to-light transition to elucidate principles of metabolic dynamics downstream of CO2 assimilation. Most metabolic changes were similar between dark-exposed and illuminated guard cells. However, illumination increased the 13C-enrichment in sugars and metabolites associated to the TCA cycle. Sucrose was labelled in the dark, but light exposure increased the 13C-labelling into this metabolite. Fumarate was strongly labelled under both dark and light conditions, while illumination increased the 13C-enrichment in pyruvate, succinate and glutamate. Only one 13C was incorporated into malate and citrate in either dark or light conditions. Our results collectively suggest that the PEPc-mediated CO2 assimilation provides carbons for gluconeogenesis, the TCA cycle and glutamate synthesis and that previously stored malate and citrate are used to underpin the specific metabolic requirements of illuminated guard cells.

2011 ◽  
Vol 77 (22) ◽  
pp. 7984-7997 ◽  
Author(s):  
Daniel Amador-Noguez ◽  
Ian A. Brasg ◽  
Xiao-Jiang Feng ◽  
Nathaniel Roquet ◽  
Joshua D. Rabinowitz

ABSTRACTThe fermentation carried out by the biofuel producerClostridium acetobutylicumis characterized by two distinct phases. Acidogenesis occurs during exponential growth and involves the rapid production of acids (acetate and butyrate). Solventogenesis initiates as cell growth slows down and involves the production of solvents (butanol, acetone, and ethanol). Using metabolomics, isotope tracers, and quantitative flux modeling, we have mapped the metabolic changes associated with the acidogenic-solventogenic transition. We observed a remarkably ordered series of metabolite concentration changes, involving almost all of the 114 measured metabolites, as the fermentation progresses from acidogenesis to solventogenesis. The intracellular levels of highly abundant amino acids and upper glycolytic intermediates decrease sharply during this transition. NAD(P)H and nucleotide triphosphates levels also decrease during solventogenesis, while low-energy nucleotides accumulate. These changes in metabolite concentrations are accompanied by large changes in intracellular metabolic fluxes. During solventogenesis, carbon flux into amino acids, as well as flux from pyruvate (the last metabolite in glycolysis) into oxaloacetate, decreases by more than 10-fold. This redirects carbon into acetyl coenzyme A, which cascades into solventogenesis. In addition, the electron-consuming reductive tricarboxylic acid (TCA) cycle is shutdown, while the electron-producing oxidative (clockwise) right side of the TCA cycle remains active. Thus, the solventogenic transition involves global remodeling of metabolism to redirect resources (carbon and reducing power) from biomass production into solvent production.


2021 ◽  
Author(s):  
Khushboo Borah ◽  
Tom A. Mendum ◽  
Nathaniel D. Hawkins ◽  
Jane L. Ward ◽  
Michael H. Beale ◽  
...  

AbstractThe utilisation of multiple host-derived carbon substrates is required by Mycobacterium tuberculosis (Mtb) to successfully sustain a tuberculosis infection thereby identifying the Mtb specific metabolic pathways and enzymes required for carbon co-metabolism as potential drug targets. Metabolic flux represents the final integrative outcome of many different levels of cellular regulation that contribute to the flow of metabolites through the metabolic network. It is therefore critical that we have an in-depth understanding of the rewiring of metabolic fluxes in different conditions. Here, we employed 13C-metabolic flux analysis using stable isotope tracers (13C and 2H) and lipid fingerprinting to investigate the metabolic network of Mtb growing slowly on physiologically relevant carbon sources in a steady state chemostat. We demonstrate that Mtb is able to efficiently co-metabolise combinations of either cholesterol or glycerol along with C2 generating carbon substrates. The uniform assimilation of the carbon sources by Mtb throughout the network indicated no compartmentalization of metabolism in these conditions however there were substrate specific differences in metabolic fluxes. This work identified that partitioning of flux between the TCA cycle and the glyoxylate shunt combined with a reversible methyl citrate cycle as the critical metabolic nodes which underlie the nutritional flexibility of Mtb. These findings provide new insights into the metabolic architecture that affords adaptability of Mtb to divergent carbon substrates.ImportanceEach year more than 1 million people die of tuberculosis (TB). Many more are infected but successfully diagnosed and treated with antibiotics, however antibiotic-resistant TB isolates are becoming ever more prevalent and so novel therapies are urgently needed that can effectively kill the causative agent. Mtb specific metabolic pathways have been identified as an important drug target in TB. However the apparent metabolic plasticity of this pathogen presents a major obstacle to efficient targeting of Mtb specific vulnerabilities and therefore it is critical to define the metabolic fluxes that Mtb utilises in different conditions. Here, we used 13C-metabolic flux analysis to measure the metabolic fluxes that Mtb uses whilst growing on potential in vivo nutrients. Our analysis identified selective use of the metabolic network that included the TCA cycle, glyoxylate shunt and methyl citrate cycle. The metabolic flux phenotypes determined in this study improves our understanding about the co-metabolism of multiple carbon substrates by Mtb identifying a reversible methyl citrate cycle and the glyoxylate shunt as the critical metabolic nodes which underlie the nutritional flexibility of Mtb.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 3717-3717
Author(s):  
Zhenghao Chen ◽  
Helga Simon-Molas ◽  
Gaspard Cretenet ◽  
Beatriz Valle-Argos ◽  
Francesco Forconi ◽  
...  

Abstract Introduction: For chronic lymphocytic leukemia (CLL), especially in the lymph node (LN) setting where cells receive proliferative and pro-survival signals, in-depth studies of altered metabolism and its relationship with therapeutic responses are still lacking. Venetoclax, a BCL-2 inhibitor currently in wide clinical use for CLL, has shown high efficiency yet emerging resistance is a growing clinical problem. In cell line models, induced resistance to Venetoclax was accompanied by profound metabolic changes 1. This is in accordance with our earlier findings on metabolic and apoptotic changes that CLL cells undergo within the LN environment 2. In the current study, we performed RNA sequencing and applied fluxomics with 13C 6-glucose and 13C 5-glutamine to investigate in detail the metabolic routes in LN CLL. This led to studies to manipulate glutamine metabolism in a venetoclax resistance model. Methods: Peripheral blood (PB) samples from CLL patients were in vitro stimulated for 24 hrs by CD40 or B cell receptor (BCR), which are two potential key signals in LN. RNAseq analysis was compared with microarray data of paired PB/LN patient samples 3. For fluxomics, CLL cells were cultured for 2 hrs in medium containing either 5 mM 13C 6-glucose or 1 mM 13C 5-glutamine. Incorporation of 13C in metabolic intermediates was analyzed by LC-MS. For glutamine blockade, CLL cells were stimulated in presence of specific inhibitors of glutamine/glutamate metabolism or amino acid transporters. Cells were then treated with venetoclax, and viability was measured. Results: Gene expression profiles demonstrated that CLL cells obtained from LN tissue as well as after in vitro CD40 or BCR stimulation showed increased expression of gene sets involved in glycolysis, oxidative phosphorylation / citric acid cycle (OXPHOS/TCA) and amino acid metabolism as well as Myc activation. This confirmed that in vitro stimulation can be used to model the CLL LN setting. For unstimulated PB CLL cells, fluxomics data demonstrated low uptake of either glucose or glutamine, with 13C labelling close to zero for most metabolites. In contrast, both CD40 or BCR stimulation increased the uptake and utilization of glucose and glutamine. 13C labelling from glucose was detected in all glycolytic intermediates analyzed in both CD40- and BCR-stimulated CLL cells. Glucose was catalyzed to lactate and also partly converted to acetyl-CoA, which entered the TCA cycle. Additionally, labelling from glucose was also increased in several metabolites of the pentose phosphate pathway (PPP) suggesting it entered nucleotide synthetic routes. Compared to glucose, the contribution of glutamine was much higher in the TCA cycle in both BCR and CD40-stimulated cells. All intermediates of the TCA cycle were highly enriched with 13C from glutamine (Figure 1A). Combined, these data revealed that glutamine is the key metabolite to fuel the TCA cycle in LN CLL cells, and prompted us to study effects of glutamine blockade in conditions of Venetoclax resistance. It was found that venetoclax resistance induced by CD40 or BCR stimulation was clearly attenuated by glutamine uptake inhibition. CLL cells became re-sensitized to Venetoclax in both CD40- or BCR-stimulated samples, with an approximate 100-fold shift in IC50 (Figure 1B). Conclusions: Our study highlights the role of glutamine, in addition to glucose, in the metabolic reprogramming that CLL cells undergo in the LN (Figure 1C). These processes show potential for therapeutic targeting. Inhibition of glutamine import could contribute to dampen tumor microenvironment-induced Venetoclax resistance. References 1. Guièze, R. et al. Mitochondrial Reprogramming Underlies Resistance to BCL-2 Inhibition in Lymphoid Malignancies. Cancer Cell 36, (2019). 2. Chen, Z. et al. Effects of Ibrutinib on Metabolic Alterations and Micro-Environmental Signalling in Chronic Lymphocytic Leukaemia. Blood 136, (2020). 3. Herishanu, Y. et al. The lymph node microenvironment promotes B-cell receptor signaling, NF-κB activation, and tumor proliferation in chronic lymphocytic leukemia. Blood 117, 563-574 (2011). Figure 1 Figure 1. Disclosures Forconi: AbbVie: Consultancy, Honoraria, Speakers Bureau; Janssen: Consultancy, Honoraria, Speakers Bureau; Roche: Honoraria; Novartis: Honoraria; Gilead: Research Funding. van der Windt: Genmab: Current Employment. Kater: Janssen, AstraZeneca: Other: Ad Board, steering committee, Research Funding; BMS, Roche/Genentech: Other: Ad Board, , Research Funding; Abbvie: Honoraria, Other: Ad Board, Research Funding; Genmab, LAVA: Other: Ad Board, Steering Committee.


2020 ◽  
Author(s):  
Riccardo Mobili ◽  
Sonia La Cognata ◽  
Francesca Merlo ◽  
Andrea Speltini ◽  
Massimo Boiocchi ◽  
...  

<div> <p>The extraction of the succinate dianion from a neutral aqueous solution into dichloromethane is obtained using a lipophilic cage-like dicopper(II) complex as the extractant. The quantitative extraction exploits the high affinity of the succinate anion for the cavity of the azacryptate. The anion is effectively transferred from the aqueous phase, buffered at pH 7 with HEPES, into dichloromethane. A 1:1 extractant:anion adduct is obtained. Extraction can be easily monitored by following changes in the UV-visible spectrum of the dicopper complex in dichloromethane, and by measuring the residual concentration of succinate in the aqueous phase by HPLC−UV. Considering i) the relevance of polycarboxylates in biochemistry, as e.g. normal intermediates of the TCA cycle, ii) the relevance of dicarboxylates in the environmental field, as e.g. waste products of industrial processes, and iii) the recently discovered role of succinate and other dicarboxylates in pathophysiological processes including cancer, our results open new perspectives for research in all contexts where selective recognition, trapping and extraction of polycarboxylates is required. </p> </div>


2021 ◽  
Vol 22 (5) ◽  
pp. 2746
Author(s):  
Dimitri Shcherbakov ◽  
Reda Juskeviciene ◽  
Adrián Cortés Sanchón ◽  
Margarita Brilkova ◽  
Hubert Rehrauer ◽  
...  

Mitochondrial misreading, conferred by mutation V338Y in mitoribosomal protein Mrps5, in-vivo is associated with a subtle neurological phenotype. Brain mitochondria of homozygous knock-in mutant Mrps5V338Y/V338Y mice show decreased oxygen consumption and reduced ATP levels. Using a combination of unbiased RNA-Seq with untargeted metabolomics, we here demonstrate a concerted response, which alleviates the impaired functionality of OXPHOS complexes in Mrps5 mutant mice. This concerted response mitigates the age-associated decline in mitochondrial gene expression and compensates for impaired respiration by transcriptional upregulation of OXPHOS components together with anaplerotic replenishment of the TCA cycle (pyruvate, 2-ketoglutarate).


GeroScience ◽  
2021 ◽  
Author(s):  
Paul S. Brookes ◽  
Ana Gabriela Jimenez

AbstractAmong several animal groups (eutherian mammals, birds, reptiles), lifespan positively correlates with body mass over several orders of magnitude. Contradicting this pattern are domesticated dogs, with small dog breeds exhibiting significantly longer lifespans than large dog breeds. The underlying mechanisms of differing aging rates across body masses are unclear, but it is generally agreed that metabolism is a significant regulator of the aging process. Herein, we performed a targeted metabolomics analysis on primary fibroblasts isolated from small and large breed young and old dogs. Regardless of size, older dogs exhibited lower glutathione and ATP, consistent with a role for oxidative stress and bioenergetic decline in aging. Furthermore, several size-specific metabolic patterns were observed with aging, including the following: (i) An apparent defect in the lower half of glycolysis in large old dogs at the level of pyruvate kinase. (ii) Increased glutamine anaplerosis into the TCA cycle in large old dogs. (iii) A potential defect in coenzyme A biosynthesis in large old dogs. (iv) Low nucleotide levels in small young dogs that corrected with age. (v) An age-dependent increase in carnitine in small dogs that was absent in large dogs. Overall, these data support the hypothesis that alterations in metabolism may underlie the different lifespans of small vs. large breed dogs, and further work in this area may afford potential therapeutic strategies to improve the lifespan of large dogs.


Cells ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 762
Author(s):  
Edward V. Prochownik ◽  
Huabo Wang

Pyruvate occupies a central metabolic node by virtue of its position at the crossroads of glycolysis and the tricarboxylic acid (TCA) cycle and its production and fate being governed by numerous cell-intrinsic and extrinsic factors. The former includes the cell’s type, redox state, ATP content, metabolic requirements and the activities of other metabolic pathways. The latter include the extracellular oxygen concentration, pH and nutrient levels, which are in turn governed by the vascular supply. Within this context, we discuss the six pathways that influence pyruvate content and utilization: 1. The lactate dehydrogenase pathway that either converts excess pyruvate to lactate or that regenerates pyruvate from lactate for use as a fuel or biosynthetic substrate; 2. The alanine pathway that generates alanine and other amino acids; 3. The pyruvate dehydrogenase complex pathway that provides acetyl-CoA, the TCA cycle’s initial substrate; 4. The pyruvate carboxylase reaction that anaplerotically supplies oxaloacetate; 5. The malic enzyme pathway that also links glycolysis and the TCA cycle and generates NADPH to support lipid bio-synthesis; and 6. The acetate bio-synthetic pathway that converts pyruvate directly to acetate. The review discusses the mechanisms controlling these pathways, how they cross-talk and how they cooperate and are regulated to maximize growth and achieve metabolic and energetic harmony.


Cancers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2634
Author(s):  
Beatriz Soldevilla ◽  
Angeles López-López ◽  
Alberto Lens-Pardo ◽  
Carlos Carretero-Puche ◽  
Angeles Lopez-Gonzalvez ◽  
...  

Purpose: High-throughput “-omic” technologies have enabled the detailed analysis of metabolic networks in several cancers, but NETs have not been explored to date. We aim to assess the metabolomic profile of NET patients to understand metabolic deregulation in these tumors and identify novel biomarkers with clinical potential. Methods: Plasma samples from 77 NETs and 68 controls were profiled by GC−MS, CE−MS and LC−MS untargeted metabolomics. OPLS-DA was performed to evaluate metabolomic differences. Related pathways were explored using Metaboanalyst 4.0. Finally, ROC and OPLS-DA analyses were performed to select metabolites with biomarker potential. Results: We identified 155 differential compounds between NETs and controls. We have detected an increase of bile acids, sugars, oxidized lipids and oxidized products from arachidonic acid and a decrease of carnitine levels in NETs. MPA/MSEA identified 32 enriched metabolic pathways in NETs related with the TCA cycle and amino acid metabolism. Finally, OPLS-DA and ROC analysis revealed 48 metabolites with diagnostic potential. Conclusions: This study provides, for the first time, a comprehensive metabolic profile of NET patients and identifies a distinctive metabolic signature in plasma of potential clinical use. A reduced set of metabolites of high diagnostic accuracy has been identified. Additionally, new enriched metabolic pathways annotated may open innovative avenues of clinical research.


Sign in / Sign up

Export Citation Format

Share Document