scholarly journals Soft, dynamic hydrogel confinement improves kidney organoid lumen morphology and reduces epithelial-mesenchymal transition in culture

2021 ◽  
Author(s):  
Floor A.A. Ruiter ◽  
Francis L.C. Morgan ◽  
Nadia Roumans ◽  
Anika Schumacher ◽  
Gisela G. Slaats ◽  
...  

Pluripotent stem cell-derived kidney organoids offer a promising solution to renal failure, yet current organoid protocols often lead to off-target cells and phenotypic alterations, preventing maturity. Here, we created various dynamic hydrogel architectures, conferring a controlled and biomimetic environment for organoid encapsulation. We investigated how hydrogel stiffness and stress relaxation affect renal phenotype and undesired fibrotic markers. We observed stiff hydrogel encapsulation led to an absence of certain renal cell types and signs of an epithelial-mesenchymal transition (EMT), whereas encapsulation in soft-stress-relaxing hydrogels led to all major renal segments, fewer fibrosis/EMT associated proteins, apical proximal tubule enrichment, and primary cilia formation, representing a significant improvement over current approaches to culture kidney organoids. Our findings show that engineering hydrogel mechanics and dynamics have a decided benefit for organoid culture. These structure-property-function relationships can enable rational design of materials, bringing us closer to functional engraftments and disease-modelling applications.

Biomolecules ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1074
Author(s):  
Giuseppina Divisato ◽  
Silvia Piscitelli ◽  
Mariantonietta Elia ◽  
Emanuela Cascone ◽  
Silvia Parisi

Embryonic stem cells (ESCs) have the extraordinary properties to indefinitely proliferate and self-renew in culture to produce different cell progeny through differentiation. This latter process recapitulates embryonic development and requires rounds of the epithelial–mesenchymal transition (EMT). EMT is characterized by the loss of the epithelial features and the acquisition of the typical phenotype of the mesenchymal cells. In pathological conditions, EMT can confer stemness or stem-like phenotypes, playing a role in the tumorigenic process. Cancer stem cells (CSCs) represent a subpopulation, found in the tumor tissues, with stem-like properties such as uncontrolled proliferation, self-renewal, and ability to differentiate into different cell types. ESCs and CSCs share numerous features (pluripotency, self-renewal, expression of stemness genes, and acquisition of epithelial–mesenchymal features), and most of them are under the control of microRNAs (miRNAs). These small molecules have relevant roles during both embryogenesis and cancer development. The aim of this review was to recapitulate molecular mechanisms shared by ESCs and CSCs, with a special focus on the recently identified classes of microRNAs (noncanonical miRNAs, mirtrons, isomiRs, and competitive endogenous miRNAs) and their complex functions during embryogenesis and cancer development.


2019 ◽  
Vol 20 (19) ◽  
pp. 4813 ◽  
Author(s):  
Sevindzh Kletukhina ◽  
Olga Neustroeva ◽  
Victoria James ◽  
Albert Rizvanov ◽  
Marina Gomzikova

Epithelial–mesenchymal transition (EMT) is a process that takes place during embryonic development, wound healing, and under some pathological processes, including fibrosis and tumor progression. The molecular changes occurring within epithelial cells during transformation to a mesenchymal phenotype have been well studied. However, to date, the mechanism of EMT induction remains to be fully elucidated. Recent findings in the field of intercellular communication have shed new light on this process and indicate the need for further studies into this important mechanism. New evidence supports the hypothesis that intercellular communication between mesenchymal stroma/stem cells (MSCs) and resident epithelial cells plays an important role in EMT induction. Besides direct interactions between cells, indirect paracrine interactions by soluble factors and extracellular vesicles also occur. Extracellular vesicles (EVs) are important mediators of intercellular communication, through the transfer of biologically active molecules, genetic material (mRNA, microRNA, siRNA, DNA), and EMT inducers to the target cells, which are capable of reprogramming recipient cells. In this review, we discuss the role of intercellular communication by EVs to induce EMT and the acquisition of stemness properties by normal and tumor epithelial cells.


Cancers ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 434 ◽  
Author(s):  
Wenjuan Mei ◽  
Xiaozeng Lin ◽  
Anil Kapoor ◽  
Yan Gu ◽  
Kuncheng Zhao ◽  
...  

Research in the last decade has clearly revealed a critical role of prostate cancer stem cells (PCSCs) in prostate cancer (PC). Prostate stem cells (PSCs) reside in both basal and luminal layers, and are the target cells of oncogenic transformation, suggesting a role of PCSCs in PC initiation. Mutations in PTEN, TP53, and RB1 commonly occur in PC, particularly in metastasis and castration-resistant PC. The loss of PTEN together with Ras activation induces partial epithelial–mesenchymal transition (EMT), which is a major mechanism that confers plasticity to cancer stem cells (CSCs) and PCSCs, which contributes to metastasis. While PTEN inactivation leads to PC, it is not sufficient for metastasis, the loss of PTEN concurrently with the inactivation of both TP53 and RB1 empower lineage plasticity in PC cells, which substantially promotes PC metastasis and the conversion to PC adenocarcinoma to neuroendocrine PC (NEPC), demonstrating the essential function of TP53 and RB1 in the suppression of PCSCs. TP53 and RB1 suppress lineage plasticity through the inhibition of SOX2 expression. In this review, we will discuss the current evidence supporting a major role of PCSCs in PC initiation and metastasis, as well as the underlying mechanisms regulating PCSCs. These discussions will be developed along with the cancer stem cell (CSC) knowledge in other cancer types.


Cancers ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2413 ◽  
Author(s):  
Asunción Fernández-Barral ◽  
Pilar Bustamante-Madrid ◽  
Gemma Ferrer-Mayorga ◽  
Antonio Barbáchano ◽  
María Jesús Larriba ◽  
...  

Vitamin D3 is the precursor of 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3), a pleiotropic hormone that is a major regulator of the human genome. 1,25(OH)2D3 modulates the phenotype and physiology of many cell types by controlling the expression of hundreds of genes in a tissue- and cell-specific fashion. Vitamin D deficiency is common among cancer patients and numerous studies have reported that 1,25(OH)2D3 promotes the differentiation of a wide panel of cultured carcinoma cells, frequently associated with a reduction in cell proliferation and survival. A major mechanism of this action is inhibition of the epithelial–mesenchymal transition, which in turn is largely based on antagonism of the Wnt/β-catenin, TGF-β and EGF signaling pathways. In addition, 1,25(OH)2D3 controls the gene expression profile and phenotype of cancer-associated fibroblasts (CAFs), which are important players in the tumorigenic process. Moreover, recent data suggest a regulatory role of 1,25(OH)2D3 in the biology of normal and cancer stem cells (CSCs). Here, we revise the current knowledge of the molecular and genetic basis of the regulation by 1,25(OH)2D3 of the differentiation and stemness of human carcinoma cells, CAFs and CSCs. These effects support a homeostatic non-cytotoxic anticancer action of 1,25(OH)2D3 based on reprogramming of the phenotype of several cell types.


2019 ◽  
Author(s):  
Ayshwarya Subramanian ◽  
Eriene-Heidi Sidhom ◽  
Maheswarareddy Emani ◽  
Nareh Sahakian ◽  
Katherine Vernon ◽  
...  

AbstractHuman iPSC-derived kidney organoids have the potential to revolutionize discovery, but assessing their consistency and reproducibility across iPSC lines, and reducing the generation of off-target cells remain an open challenge. Here, we used single cell RNA-Seq (scRNA-Seq) to profile 415,775 cells to show that organoid composition and development are comparable to human fetal and adult kidneys. Although cell classes were largely reproducible across iPSC lines, time points, protocols, and replicates, cell proportions were variable between different iPSC lines. Off-target cell proportions were the most variable. Prolonged in vitro culture did not alter cell types, but organoid transplantation under the mouse kidney capsule diminished off-target cells. Our work shows how scRNA-seq can help score organoids for reproducibility, faithfulness and quality, that kidney organoids derived from different iPSC lines are comparable surrogates for human kidney, and that transplantation enhances their formation by diminishing off-target cells.


2019 ◽  
Author(s):  
Kalle T. Rytkönen ◽  
Taija Heinosalo ◽  
Mehrad Mahmoudian ◽  
Xinghong Ma ◽  
Antti Perheentupa ◽  
...  

AbstractHuman reproductive success depends on a properly decidualized uterine endometrium that allows implantation and the formation of the placenta. At the core of the decidualization process are endometrial stromal fibroblasts (ESF) that differentiate to decidual stromal cells (DSC). As variations in oxygen levels are functionally relevant in endometrium both upon menstruation and during placentation, we assessed the transcriptomic responses to hypoxia in ESF and DSC. In both cell types hypoxia upregulated genes in classical hypoxia pathways such as glycolysis and the epithelial mesenchymal transition. In DSC hypoxia restored an ESF like transcriptional state for a subset of transcription factors that are known targets of the progesterone receptor, suggesting that hypoxia partially interferes with progesterone signaling. In both cell types hypoxia modified transcription of several inflammatory transcription factors that are known regulators of decidualization, including decreased transcription of STATs and increased transcription of CEBPs. We observed that hypoxia upregulated genes had a significant overlap with genes previously detected to be upregulated in endometriotic stromal cells. Promoter analysis of the genes in this overlap suggested the hypoxia upregulated Jun/Fos and CEBP transcription factors as potential drivers of endometriosis-associated transcription. Using immunohistochemistry we observed increased expression of JUND and CEBPD in endometriosis lesions compared to healthy endometria. Overall the findings suggest that hypoxic stress establishes distinct transcriptional states in ESF and DSC, and that hypoxia influences the expression of genes that contribute to the core gene regulation of endometriotic stromal cells.


2018 ◽  
Author(s):  
Salma Jalal ◽  
Ruby Yun-Ju Huang ◽  
Virgile Viasnoff ◽  
Yee Han Tee ◽  
Alexander Bershadsky

AbstractWe systematically investigated the principles of actin cytoskeleton self-organization in two cell types, fibroblasts and epitheliocytes, by confining isolated cells on isotropic adhesive islands of varying size. In fibroblasts, we previously described that an initially circular pattern of circumferential actin dynamically evolves into a radial pattern of actin bundles that spontaneously transforms into a chiral pattern, before finally producing parallel linear stress fibres. We now show that progression from circular to chiral actin patterns depends on cell projected area and rarely occurs on small islands. Epitheliocytes however, did not exhibit succession through all the actin patterns described above even on large islands. Upon confinement, the actin cytoskeleton in non-keratinocyte epitheliocytes is arrested at the circular stage, while in keratinocytes it can progress as far as the radial pattern but still cannot break symmetry. Epithelial-mesenchymal transition pushed actin cytoskeleton development from circular towards radial patterns but remains insufficient to cause chirality. Surprisingly, small doses of G-actin sequestering drug, latrunculin A, induced chiral swirling in keratinocytes. During this swirling, keratin filaments follow actin and also demonstrate chiral swirling movement. Elimination of the keratin network by genetic silencing of Type II keratins, however, did not affect the self-organization of the actin cytoskeleton.


2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Xiaonian Zhu ◽  
Wei Luo ◽  
Chunhua Bei ◽  
Juan Kong ◽  
Shidong Zhang ◽  
...  

Abstract Background Hepatocellular carcinoma (HCC) is one of the most common malignancies worldwide, especially in China, with high metastasis and poor prognosis. Recently, as the core component of the polycomb repressive complexes 1 (PRC1), chromobox protein homolog 8 (CBX8) is considered as an oncogene and prognostic marker in HCC. Methods A tissue microarray of 166 paired HCC and adjacent non-tumor samples were collected to identify the relationship between CBX8 and epithelial mesenchymal transition (EMT) associated proteins by Spearman correlation analysis. Knock-down of CBX8 in HCC cells was conducted to detect the biologic functions of CBX8 in HCC metastasis. Results We found out that CBX8 was over-expressed in HCC and its expression was closely related to the metastasis of HCC patients. In addition, knock-down of CBX8 was found to inhibit the invasion and migration ability of HCC cells. Moreover, there was a significant relationship between expression of CBX8 and EMT associated proteins both in HCC cells and tumor tissues. Conclusions Our results indicate that CBX8 promotes metastasis of HCC by inducing EMT process.


Sign in / Sign up

Export Citation Format

Share Document