scholarly journals Towards environmental DNA-based bioassessment of freshwater reservoirs with small volumes of water: robust molecular protocols

2021 ◽  
Author(s):  
Rebecca Ker Loh ◽  
Sujatha Narayanan Kutty ◽  
Darren Chong Jinn Yeo ◽  
Rudolf Meier

Bioassessment of freshwater quality via eDNA is rapidly developing into a powerful alternative to traditional methods involving collecting, sorting, and identifying macroinvertebrates based on morphology. Particularly attractive would be methods that can use remote-controlled boats for sampling because it would allow for cost-effective, and frequent monitoring at multiple sites. The latter will be particularly important for tropical reservoirs that require year-around surveillance. We here optimize molecular protocols for capturing reservoir-specific differences in metazoan communities based on small water volumes (15 mL). The optimization is based on samples from two freshwater reservoirs with very different water qualities ("reservoir signal"). Each reservoir was sampled at three sites ("biological replicates"). For each water sample, the DNA was extracted twice ("technical replicates"). We then tested how much DNA template (0.1 ng to 15 ng) and how many PCR cycles (25 or 35) minimized variance between technical replicates. We find that 15 mL is sufficient for capturing the reservoir signal regardless of sampling time, template amounts, or PCR cycle numbers. Indeed, extrapolation from our results suggests that <1 mL would be sufficient because only 17 of 59 metazoan mOTUs (mainly planktonic crustaceans and rotifers) detected with a 313bp COI minibarcode were shared. We find that the use of 35 PCR cycles significantly lowered the number of detected species and that template amounts <0.5 ng yielded somewhat higher variance between technical replicates. Despite extensive trials, the variance between technical replicates remained high (Bray-Curtis: 5-20%; Jaccard: 10-40%) and we predict that it will be difficult to reduce this variance further. However, the overall reservoir differences are so strong that all biological and technical replicates can be correctly assigned.

Author(s):  
Katherine E. Mullin ◽  
Izabela M. Barata ◽  
Jeff Dawson ◽  
Pablo Orozco-terWengel

AbstractEnvironmental DNA (eDNA) is becoming an increasingly used tool for monitoring cryptic species within terrestrial and aquatic systems. We present the first method for extracting water from tree holes for eDNA studies of tree-dwelling frogs, and the first use of eDNA for amphibian monitoring in Madagascar. This pilot study expands on a previously developed method and aims to provide a simple field protocol for DNA extraction from very small water samples, using a relatively inexpensive kit compared to other collection methods. We collected 20 ml of water from tree holes in Ambohitantely Special Reserve in Madagascar, with the aim to survey for the Critically Endangered tree frog Anodonthyla vallani, and we developed species specific cytochrome c oxidase 1 primers for this species. While our two samples did not detect A. vallani, we successfully extracted up to 16.6 ng/µl of eDNA from the samples and using 16S rRNA primers barcoded the tree frog Plethodontohyla mihanika in one of the samples. Despite just two samples being collected, we highlight the future potential of eDNA from tree holes for investigating cryptic habitat specialist amphibians given we extracted frog eDNA from just 20 ml of water. The method provides a rapid, simple, and cost-effective method which can assist cryptic species monitoring in challenging and time-consuming field conditions and should be developed further for frog surveying in Madagascar and beyond. The newly developed primers can be used for further work using this eDNA method to survey threatened Anodonthyla frog species.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Michael J. Allison ◽  
Jessica M. Round ◽  
Lauren C. Bergman ◽  
Ali Mirabzadeh ◽  
Heather Allen ◽  
...  

Abstract Objective Silica gel beads have promise as a non-toxic, cost-effective, portable method for storing environmental DNA (eDNA) immobilized on filter membranes. Consequently, many ecological surveys are turning to silica bead filter desiccation rather than ethanol preservation. However, no systematic evaluation of silica bead storage conditions or duration past 1 week has been published. The present study evaluates the quality of filter-immobilized eDNA desiccated with silica gel under different storage conditions for over a year using targeted quantitative real-time polymerase chain reaction (qPCR)-based assays. Results While the detection of relatively abundant eDNA target was stable over 15 months from either ethanol- or silica gel-preserved filters at − 20 and 4 °C, silica gel out-performed ethanol preservation at 23 °C by preventing a progressive decrease in eDNA sample quality. Silica gel filter desiccation preserved low abundance eDNA equally well up to 1 month regardless of storage temperature (18, 4, or − 20 °C). However only storage at − 20 °C prevented a noticeable decrease in detectability at 5 and 12 months. The results indicate that brief storage of eDNA filters with silica gel beads up to 1 month can be successfully accomplished at a range of temperatures. However, longer-term storage should be at − 20 °C to maximize sample integrity.


Genome ◽  
2018 ◽  
Vol 61 (11) ◽  
pp. 807-814 ◽  
Author(s):  
Bastian Egeter ◽  
Sara Peixoto ◽  
José C. Brito ◽  
Simon Jarman ◽  
Pamela Puppo ◽  
...  

The Sahara desert is the largest warm desert in the world and a poorly explored area. Small water-bodies occur across the desert and are crucial habitats for vertebrate biodiversity. Environmental DNA (eDNA) is a powerful tool for species detection and is being increasingly used to conduct biodiversity assessments. However, there are a number of difficulties with sampling eDNA from such turbid water-bodies and it is often not feasible to rely on electrical tools in remote desert environments. We trialled a manually powered filtering method in Mauritania, using pre-filtration to circumvent problems posed by turbid water in remote arid areas. From nine vertebrate species expected in the water-bodies, four were detected visually, two via metabarcoding, and one via both methods. Difficulties filtering turbid water led to severe constraints, limiting the sampling protocol to only one sampling point per study site, which alone may largely explain why many of the expected vertebrate species were not detected. The amplification of human DNA using general vertebrate primers is also likely to have contributed to the low number of taxa identified. Here we highlight a number of challenges that need to be overcome to successfully conduct metabarcoding eDNA studies for vertebrates in desert environments in Africa.


Author(s):  
Kala Meah ◽  
Steven Fletcher ◽  
Yu Wan ◽  
Sadrul Ula

Many parts of the western US is rural in nature and consequently do not have electrical distribution lines in many parts of farms and ranches. Distribution line extension costs can run from $15,000 to $25,000 per mile, thereby making availability of electricity to small water pumping projects economically unattractive. Solar photo-voltaic (PV) powered water pumping is more cost effective in these small scale applications. Many western states including Wyoming are passing through fifth year of drought with the consequent shortages of water for many applications. Wyoming State Climatologist is predicting a possible 5–10 years of drought. Drought impacts the surface water right away, while it takes much longer to impact the underground aquifers. To mitigate the effect on the livestock and wildlife, Wyoming Governor Dave Freudenthal initiated a solar water pumping initiative in cooperation with the University of Wyoming, County Conservation Districts, Rural Electric Cooperatives, and ranching organizations. Solar water pumping has several advantages over traditional systems; for example, diesel or propane engines require not only expensive fuels, they also create noise and air pollution in many remote pristine areas. Solar systems are environment friendly, low maintenance and have no fuel cost. In this paper the design, installation and performance monitoring of the solar system for small scale remote water pumping will be presented.


2018 ◽  
Author(s):  
Keiichi Fukaya ◽  
Hiroaki Murakami ◽  
Seokjin Yoon ◽  
Kenji Minami ◽  
Yutaka Osada ◽  
...  

AbstractWe propose a general framework of abundance estimation based on spatially replicated quantitative measurements of environmental DNA in which production, transport, and degradation of DNA are explicitly accounted for. Application to a Japanese jack mackerel (Trachurus japonicus) population in Maizuru Bay revealed that the method gives an estimate of population abundance comparable to that of a quantitative echo sounder method. These findings indicate the ability of environmental DNA to reliably reflect population abundance of aquatic macroorganisms and may offer a new avenue for population monitoring based on the fast, cost-effective, and non-invasive sampling of genetic information.


2022 ◽  
Vol 9 ◽  
Author(s):  
Iain Perry ◽  
Ifan B. Jâms ◽  
Roser Casas-Mulet ◽  
Josefina Hamutoko ◽  
Angela Marchbank ◽  
...  

By identifying fragments of DNA in the environment, eDNA approaches present a promising tool for monitoring biodiversity in a cost-effective way. This is particularly pertinent for countries where traditional morphological monitoring has been sparse. The first step to realising the potential of eDNA is to develop methodologies that are adapted to local conditions. Here, we test field and laboratory eDNA protocols (aqueous and sediment samples) in a range of semi-arid ecosystems in Namibia. We successfully gathered eDNA data on a broad suite of organisms at multiple trophic levels (including algae, invertebrates and bacteria) but identified two key challenges to the implementation of eDNA methods in the region: 1) high turbidity requires a tailored sampling technique and 2) identification of taxa by eDNA methods is currently constrained by a lack of reference data. We hope this work will guide the deployment of eDNA biomonitoring in the arid ecosystems of Namibia and neighbouring countries.


2012 ◽  
Vol 39 (7) ◽  
pp. 629 ◽  
Author(s):  
Zachary H. Olson ◽  
Jeffrey T. Briggler ◽  
Rod N. Williams

Context Environmental DNA, or eDNA, methods are a novel application of non-invasive genetic sampling in which DNA from organisms is detected via sampling of water or soil, typically for the purposes of determining the presence or absence of an organism. eDNA methods have the potential to revolutionise the study of rare or endangered taxa. Aims We evaluated the efficacy of eDNA sampling to detect populations of an amphibian of conservation concern, the eastern hellbender (Cryptobranchus a. alleganiensis), indirectly from their aquatic environments. Methods We developed species-specific primers, validated their specificity and sensitivity, and assessed the utility of our methods in silico and in laboratory trials. In the field, we collected water samples from three sites with known densities of hellbenders, and from one site where hellbenders do not occur. We filtered water samples, extracted DNA from filters, and assayed the extraction products for hellbender DNA by using polymerase chain reaction (PCR) and gel electrophoresis. Key results Our methods detected hellbenders at densities approaching the lowest of reported natural densities. The low-density site (0.16 hellbenders per 100 m2) yielded two positive amplifications, the medium-density site (0.38 hellbenders per 100 m2) yielded eight positive amplifications, and the high-density site (0.88 hellbenders per 100 m2) yielded 10 positive amplifications. The apparent relationship between density and detection was obfuscated when river discharge was considered. There was no amplification in any negative control. Conclusion eDNA methods may represent a cost-effective means by which to establish broad-scale patterns of occupancy for hellbenders. Implications eDNA can be considered a valuable tool for detecting many species that are otherwise difficult to study.


2015 ◽  
Vol 307 (3) ◽  
pp. 2277-2280 ◽  
Author(s):  
Paola Tuccimei ◽  
Derek Lane-Smith ◽  
Gianfranco Galli ◽  
Carlo Lucchetti ◽  
Gabriele De Simone ◽  
...  

2019 ◽  
Vol 55 (1) ◽  
pp. 93-105 ◽  
Author(s):  
Sophie Felleiter ◽  
Kevin McDermott ◽  
Geof Hall ◽  
Prameet Sheth ◽  
Anna Majury

Abstract Private water wells provide drinking water for an estimated 4.1 million households in Canada yet remain understudied in the context of microbial water quality or human health impacts. As there exists little systematic surveillance for enteric infections or outbreaks related to well water sources, consumers may be at risk of waterborne infectious diseases. A standard protocol in Ontario requires 200 mL of water, collected, and submitted by well owners, half of which is used to analyze for Escherichia coli and total coliforms (TCs). The aim of this study was to determine the efficacy of testing small water volumes and to survey for other contaminants in addition to bacterial indicators to inform pathogen prevalence and fecal source in drinking water wells. Samples were assessed for E. coli and TCs, by culture, and genetic markers of Bacteroides spp., Campylobacter spp., Salmonella spp., and Shiga toxin-producing E. coli, using qPCR. The source of fecal contamination varied by the geographic region and may be explained by septic tank density and underlying geology, among other factors. A small number of samples (1.9%) showed the evidence of contamination with enteric pathogens. Lastly, E. coli measured by qPCR, as opposed to culture, correlated more strongly to Bacteroides markers.


2019 ◽  
Vol 40 (2) ◽  
pp. 129-148 ◽  
Author(s):  
Gentile Francesco Ficetola ◽  
Raoul Manenti ◽  
Pierre Taberlet

Abstract In the last decade, eDNA and metabarcoding have opened new avenues to biodiversity studies; amphibians and reptiles are animals for which these new approaches have allowed great leaps forward. Here we review different approaches through which eDNA can be used to study amphibians, reptiles and many more organisms. eDNA is often used to evaluate the presence of target species in freshwaters; it has been particularly useful to detect invasive alien amphibians and secretive or rare species, but the metabarcoding approach is increasingly used as a cost-effective approach to assess entire communities. There is growing evidence that eDNA can be also useful to study terrestrial organisms, to evaluate the relative abundance of species, and to detect reptiles. Metabarcoding has also revolutionized studies on the microbiome associated to skin and gut, clarifying the complex relationships between pathogens, microbial diversity and environmental variation. We also identify additional aspects that have received limited attention so far, but can greatly benefit from innovative applications of eDNA, such as the study of past biodiversity, diet analysis and the reconstruction of trophic interactions. Despite impressive potential, eDNA and metabarcoding also bear substantial technical and analytical complexity; we identify laboratory and analytical strategies that can improve the robustness of results. Collaboration among field biologists, ecologist, molecular biologists, and bioinformaticians is allowing fast technical and conceptual advances; multidisciplinary studies involving eDNA analyses will greatly improve our understanding of the complex relationships between organisms, and our effectiveness in assessing and preventing the impact of human activities.


Sign in / Sign up

Export Citation Format

Share Document