scholarly journals NucPosDB: a database of nucleosome positioning in vivo and nucleosomics of cell-free DNA

2021 ◽  
Author(s):  
Mariya Shtumpf ◽  
Kristan V Piroeva ◽  
Shivam P Agrawal ◽  
Divya R Jacob ◽  
Vladimir B. Teif

Nucleosome positioning is involved in many gene regulatory processes happening in the cell and it may change as cells differentiate or respond to the changing microenvironment in a healthy or diseased organism. One important implication of nucleosome positioning in clinical epigenetics is its use in the "nucleosomics" analysis of cell-free DNA (cfDNA) for the purpose of patient diagnostics in liquid biopsies. The rationale for this is that the apoptotic nucleases that digest chromatin of the dying cells mostly cut DNA between nucleosomes. Thus, the short pieces of DNA in body fluids reflect the positions of nucleosomes in the cells of origin. Here we report a systematic nucleosomics database - NucPosDB, curating published nucleosome positioning datasets in vivo as well as datasets of sequenced cell-free DNA (cfDNA) that reflect nucleosome positioning in situ in the cells of origin. Users can select subsets of the database by a number of criteria and then obtain raw or processed data. NucPosDB also reports the originally determined regions with stable nucleosome occupancy across several individuals with a given condition. An additional section provides a catalogue of computational tools for the analysis of nucleosome positioning or cfDNA experiments and theoretical algorithms for the prediction of nucleosome positioning from DNA sequence. We provide an overview of the field, describe the structure of the database in this context and demonstrate data variability using examples of different medical conditions. NucPosDB is useful both for analysis of fundamental gene regulation processes and training computational models for patient diagnostics based on cfDNA. The database currently curates ~400 publications on nucleosome positioning in cell lines and in situ as well as cfDNA from >10,000 patients and healthy volunteers. For open-access cfDNA datasets as well as key MNase-seq datasets in human cells, NucPosDB allows downloading processed mapped data in addition to the stable-nucleosome regions. NucPosDB is available at https://generegulation.org/nucposdb/.

Cancers ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1448
Author(s):  
Raquel Herranz ◽  
Julia Oto ◽  
Emma Plana ◽  
Álvaro Fernández-Pardo ◽  
Fernando Cana ◽  
...  

Bladder cancer (BC) is among the most frequent cancer types in the world and is the most lethal urological malignancy. Presently, diagnostic and follow-up methods for BC are expensive and invasive. Thus, the identification of novel predictive biomarkers for diagnosis, progression, and prognosis of BC is of paramount importance. To date, several studies have evidenced that cell-free DNA (cfDNA) found in liquid biopsies such as blood and urine may play a role in the particular scenario of urologic tumors, and its analysis may improve BC diagnosis report about cancer progression or even evaluate the effectiveness of a specific treatment or anticipate whether a treatment would be useful for a specific patient depending on the tumor characteristics. In the present review, we have summarized the up-to-date studies evaluating the value of cfDNA as potential diagnostic, prognostic, or monitoring biomarker for BC in several biofluids.


2011 ◽  
Vol 57 (4) ◽  
pp. 633-636 ◽  
Author(s):  
Thomas Beiter ◽  
Annunziata Fragasso ◽  
Jens Hudemann ◽  
Andreas M Nieß ◽  
Perikles Simon

BACKGROUND Increased plasma concentrations of cell-free DNA (cf-DNA) are considered a hallmark of various clinical conditions. Despite intensive research in this field, limited data are available concerning the time course of release and clearance of cf-DNA in vivo. METHODS We extracted cf-DNA from plasma samples taken before and immediately after a 10-km cross-country run, and from samples taken before, immediately after, and 30 min after exhaustive short-term treadmill exercise. The contribution of nuclear (nDNA) and mitochondrial DNA (mtDNA) was measured by quantitative real-time PCR. The incremental treadmill exercise setup was exploited to delineate the precise sequencing and timing of cf-nDNA, lactate, and high-mobility group box 1 protein (HMGB1) release during the exercise and recovery phases. RESULTS Postexercise plasma cf-nDNA concentrations in cross-country and treadmill runners were significantly increased, by 7.6-fold and 9.9-fold, respectively (P < 0.001). cf-nDNA concentrations were not correlated with age, sex, or body mass index. Plasma concentrations of cf-nDNA and HMGB1 in postexercise samples of treadmill runners were significantly correlated (r = 0.84; P = 0.004). cf-mtDNA concentrations were not affected by treadmill exercise. Time-course analyses demonstrated that cf-nDNA is released within minutes after the onset of exercise and is rapidly cleared from the circulation after the cessation of exercise. Nearly congruent kinetics for cf-nDNA, lactate, and HMGB1 were observed during the exercise phase. CONCLUSIONS A single bout of exhaustive short-term treadmill exercise constitutes a versatile model system suitable for addressing basic questions about cf-DNA biology.


2002 ◽  
Vol 8 (3) ◽  
pp. 237-242 ◽  
Author(s):  
J Hong ◽  
M V Tejada-Simon ◽  
V M Rivera ◽  
Y CQ Zang ◽  
J Z Zhang

Viral infections are potentially associated with the etiology and pathogenesis of multiple sclerosis (MS). It has been speculated that the treatment efficacy of interferon beta (IFN beta) in MS may relate to its anti-viral properties. The study was undertaken to evaluate the in vivo anti-viral effects of IFN beta-1a in patients with MS. Human herpesvirus-6 (HHV-6) was studied as an example for being a latent neurotropic virus. IFN beta used at concentrations of approximately 0.5 mg/ml was shown to significantly reduce in vitro HHV-6 replication in a susceptible T-cell line. Sera derived from 23 MS patients treated with IFN beta-1a were examined for serum cell-free DNA of HHV-6 as an indicator for viral replication and the reactivity of IgM antibodies to a recombinant HHV-6 virion protein containing a known immunoreactive region. The results were compared with those of control sera obtained from untreated MS (n=29) and healthy individuals (n=21). The findings indicated that IFN beta treatment significantly reduced HHV-6 replication as evident by decreased cell-free DNA in treated MS specimens. The results correlated with decreased IgM reactivity to the HHV-6 antigen in treated MS patients compared to untreated controls, suggesting reduced exposure to HHV-6. The findings were confirmed in paired sera obtained from seven MS patients before and after the treatment. The study provides new evidence indicating that IFN beta has potent in vivo anti-viral effects that may contribute to the treatment efficacy in MS.


2021 ◽  
Vol 8 ◽  
Author(s):  
Bo-Wei Han ◽  
Xu Yang ◽  
Shou-Fang Qu ◽  
Zhi-Wei Guo ◽  
Li-Min Huang ◽  
...  

Cell-free DNA (cfDNA) serves as a footprint of the nucleosome occupancy status of transcription start sites (TSSs), and has been subject to wide development for use in noninvasive health monitoring and disease detection. However, the requirement for high sequencing depth limits its clinical use. Here, we introduce a deep-learning pipeline designed for TSS coverage profiles generated from shallow cfDNA sequencing called the Autoencoder of cfDNA TSS (AECT) coverage profile. AECT outperformed existing single-cell sequencing imputation algorithms in terms of improvements to TSS coverage accuracy and the capture of latent biological features that distinguish sex or tumor status. We built classifiers for the detection of breast and rectal cancer using AECT-imputed shallow sequencing data, and their performance was close to that achieved by high-depth sequencing, suggesting that AECT could provide a broadly applicable noninvasive screening approach with high accuracy and at a moderate cost.


2019 ◽  
Vol 46 (12) ◽  
pp. 1560-1569 ◽  
Author(s):  
Mi-Hyun Ahn ◽  
Jae Ho Han ◽  
Young-Jun Chwae ◽  
Ju-Yang Jung ◽  
Chang-Hee Suh ◽  
...  

Objective.Release of neutrophil extracellular traps (NET) has been described as an effector mechanism of polymorphonuclear neutrophils in several inflammatory diseases. Thus, this study was performed to evaluate the role of NET in the pathogenesis of adult-onset Still disease (AOSD).Methods.We determined the serum levels of NET molecules and investigated their associations with clinical disease activities in patients with AOSD. Further, we analyzed the differences in the NETosis response in AOSD patients compared to healthy controls (HC). To explore the in vivo involvement of NET in AOSD, we performed immunohistochemical analysis of skin and lymph node (LN) biopsies for proteins related to NET in patients with active AOSD.Results.Serum levels of cell-free DNA, myeloperoxidase (MPO)-DNA complex, and α-defensin were significantly increased in patients with AOSD compared to HC. Serum levels of the NET molecules, cell-free DNA, MPO-DNA, and α-defensin were correlated with several disease activity markers for AOSD. In followup of patients with AOSD after treatment with corticosteroid, the levels of cell-free DNA and α-defensin decreased significantly. On immunohistochemistry, neutrophil elastase–positive and MPO-positive inflammatory cells were detected in skin and LN of patients with AOSD, and were expressed in fiber form in the lesions. The serum from patients with active AOSD induced NETosis in neutrophils from HC. NET molecules induced interleukin 1β production in monocytes, representing a novel mechanism in the pathogenesis of AOSD.Conclusion.The findings presented here suggest that NET may contribute to the inflammatory response and pathogenesis in AOSD.


2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Alexander Hendricks ◽  
Philip Rosenstiel ◽  
Sebastian Hinz ◽  
Greta Burmeister ◽  
Christoph Röcken ◽  
...  

Abstract Background Liquid biopsies of blood plasma cell free DNA can be used to monitor treatment response and potentially detect mutations that are present in resistant clones in metastatic cancer patients. Case presentation In our non-interventional liquid biopsy study, a male patient in his fifties diagnosed with stage IV colorectal cancer and polytope liver metastases rapidly progressed after completing chemotherapy and deceased 8 months after diagnosis. Retrospective cell free DNA testing showed that the APC/TP53/KRAS major clone responded quickly after 3 cycles of FOLFIRI + Bevacizumab. Retrospective exome sequencing of pre-chemotherapy and post-chemotherapy tissue samples including metastases confirmed that the APC/TP53/KRAS and other major clonal mutations (GPR50, SLC5A, ZIC3, SF3A1 and others) were present in all samples. After the last chemotherapy cycle, CT imaging, CEA and CA19–9 markers validated the cfDNA findings of treatment response. However, 5 weeks later, the tumour had rapidly progressed. Conclusion As FOLFIRI+Bevacizumab has recently also been associated with sustained complete remission in a APC/TP53/KRAS triple-mutated patient, these driver genes should be tested and monitored in a more in-depth manner in future patients. Patients with metastatic disease should be monitored more closely during and after chemotherapy, ideally using cfDNA.


2020 ◽  
pp. 680-713 ◽  
Author(s):  
Ha X. Dang ◽  
Pradeep S. Chauhan ◽  
Haley Ellis ◽  
Wenjia Feng ◽  
Peter K. Harris ◽  
...  

PURPOSE Cell-free DNA (cfDNA) and circulating tumor cell (CTC)–based liquid biopsies have emerged as potential tools to predict responses to androgen receptor (AR)–directed therapy in metastatic prostate cancer. However, because of complex mechanisms and incomplete understanding of genomic events involved in metastatic prostate cancer resistance, current assays (eg, CTC AR-V7) demonstrate low sensitivity and remain underutilized. The recent discovery of AR enhancer amplification in > 80% of patients with metastatic disease and its association with disease resistance presents an opportunity to improve on current assays. We hypothesized that tracking AR/enhancer genomic alterations in plasma cfDNA would detect resistance with high sensitivity and specificity. PATIENTS AND METHODS We developed a targeted sequencing and analysis method as part of a new assay called Enhancer and Neighboring Loci of Androgen Receptor Sequencing (EnhanceAR-Seq). We applied EnhanceAR-Seq to plasma collected from 40 patients with metastatic prostate cancer treated with AR-directed therapy to monitor AR/enhancer genomic alterations and correlated these events with therapy resistance, progression-free survival (PFS), and overall survival (OS). RESULTS EnhanceAR-Seq identified genomic alterations in the AR/enhancer locus in 45% of cases, including a 40% rate of AR enhancer amplification. Patients with AR/enhancer alterations had significantly worse PFS and OS than those without (6-month PFS, 30% v 71%; P = .0002; 6-month OS, 59% v 100%; P = .0015). AR/enhancer alterations in plasma cfDNA detected 18 of 23 resistant cases (78%) and outperformed the CTC AR-V7 assay, which was also run on a subset of patients. CONCLUSION cfDNA-based AR locus alterations, including of the enhancer, are strongly associated with resistance to AR-directed therapy and significantly worse survival. cfDNA analysis using EnhanceAR-Seq may enable more precise risk stratification and personalized therapeutic approaches for metastatic prostate cancer.


2017 ◽  
Vol 35 (15_suppl) ◽  
pp. 11551-11551
Author(s):  
Lino Moehrmann ◽  
Helen J. Huang ◽  
David S. Hong ◽  
Apostolia Maria Tsimberidou ◽  
Siqing Fu ◽  
...  

11551 Background: Blood-based liquid biopsies offer easy accessible genomic material for molecular diagnostics in cancer. Commonly used cell-free DNA (cfDNA) originates from dying cells. In contrast exosomal nucleic acid (exoNA) originates from living cells, which can better reflect underlying cancer biology. Methods: We isolated exoNA (EXO52) and cfDNA (QIAamp Circulating Nucleic Acid kit) from plasma of patients with progressing advanced cancers and tested for BRAFV600, KRASG12/G13, and EGFRexon19del/L858R mutations using next-generation sequencing (EXO1000), droplet digital PCR (ddPCR, QX200) and BEAMing digital PCR. The results were compared to clinical testing of archival tumor tissue and correlated with survival. Results: Of the 43 patients (colorectal cancer, 20; melanoma, 8; non-small cell lung cancer, 6; ovarian cancer, 2; papillary thyroid cancer, 2; other cancers, 5) 41 had a mutation in the tumor tissue (20 [47%] BRAF mutation, 17 [40%] KRAS mutation and 4 [9%] EGFR mutation). Mutation testing of plasma exoNA from all 43 patients detected 39 (95%) of 41 mutations present in tumor tissue with 100% specificity. Mutation testing of plasma cfDNA from 39 patients using ddPCR detected 33 (89%) of 37 mutations present in tumor and testing of plasma cfDNA from 37 patients using BEAMing detected 34 (97%) of 35 mutations present in tumor tissue; however, both cfDNA methods reported an additional KRAS mutation not present in tumor tissue. Patients with high mutation allele frequency (MAF, > median) had shorter median survival compared to patients with low MAF ( < median) when using exoNA (5.9 vs. 11.8 months, P= 0.006), but not cfDNA ddPCR (6.0 vs. 7.4 months, P= 0.06) or cfDNA BEAMing (6.5 vs. 7.4 month, P= 0.07). High MAF in exoNA was an independent prognostic factor for survival in multicovariate analysis (HR 0.13, P= 0.017). Conclusions: Mutation testing of plasma exoNA for common BRAF, KRAS, and EGFR mutations has high sensitivity compared to clinical testing of archival tumor tissue and better specificity than PCR testing of plasma cfDNA. High MAF in exoNA is the independent prognostic factor for shorter survival.


2017 ◽  
Vol 35 (15_suppl) ◽  
pp. e14524-e14524
Author(s):  
Madappa N. Kundranda ◽  
Alexander Koenig ◽  
Julia Beck ◽  
Kirsten Bornemann-Kolatzki ◽  
Jessica Coats ◽  
...  

e14524 Background: Humoral tumor markers are used clinically for real-time assessment of therapeutic efficacy. In pancreatic ductal adenocarcinoma (PDAC) the predominant marker is CA19-9, which is not expressed by 10 to 30% of patients depending on race. We compared plasma cell-free DNA (cfDNA) copy number based assay with changes in serum CA19-9 levels and radiological responses to predict responses to systemic therapy. Methods: In a laboratory blinded, prospective multicenter pilot study, 40 non-resectable PDAC patients, treated with (m)FOLFIRINOX, CAPIRI, or gemcitabine +/- nab-paclitaxel) are currently enrolled. CA19-9 was determined in the local center’s laboratory. Tumor cfDNA was measured with a copy-number instability (CNI) scoring assay, determined by next generation sequencing in a centralized laboratory. The CNI score assesses the amount of cfDNA with somatic macro-alterations originating from malignant neoplasms. The difference of the values before commencing therapy (baseline) and prior to cycle 2 (either rising or falling) was calculated as a predictor of standardized radiological evaluation of chemotherapeutic efficacy. Results: 37 patients (3 drop-outs) had data for baseline and cycle 2, of which CA19-9 was elevated and evaluable in 29 patients. The direction from baseline to cycle 2 of CA19-9 and CNI scores were in agreement in 18/29 patients. 9 of 11 cases with discordant CNI score and CA19-9 had treatment response data, and CNI correlated with 7/9 (78%); in contrast 7/9 had rising CA19-9, when response was stable disease or better (22% concordance). In the 27 patients with available imaging, CNI predicted better (n = 18) than CA19-9 (n = 10) (p = 0.03 Fisher’s exact). Conclusions: This comparative study on cfDNA versus CA19-9 suggest that cfDNA CNI quantitation is a potentially more reliable blood based marker for early real-time assessment of efficacy in systemic PDAC therapy than CA19-9, compared to standard of care imaging. The better prediction after the first cycle might be due to the very short in vivo half-life of cfDNA ( < 1hr) compared to about one week for CA19-9. These results justify a larger prospective validation trial.


2019 ◽  
Author(s):  
Zhongling Jiang ◽  
Bin Zhang

Nucleosome positioning controls the accessible regions of chromatin and plays essential roles in DNA-templated processes. ATP driven remodeling enzymes are known to be crucial for its establishment in vivo, but their non-equilibrium nature has hindered the development of a unified theoretical framework for nucleosome positioning. Using a perturbation theory, we show that the effect of these enzymes can be well approximated by effective equilibrium models with rescaled temperatures and interactions. Numerical simulations support the accuracy of the theory in predicting both kinetic and steady-state quantities, including the effective temperature and the radial distribution function, in biologically relevant regimes. The energy landscape view emerging from our study provides an intuitive understanding for the impact of remodeling enzymes in either reinforcing or overwriting intrinsic signals for nucleosome positioning, and may help improve the accuracy of computational models for its prediction in silico.


Sign in / Sign up

Export Citation Format

Share Document