scholarly journals RAS mutation patterns arise from tissue-specific responses to distinct oncogenic signaling

2021 ◽  
Author(s):  
Ozgun Erdogan ◽  
Nicole L.K. Pershing ◽  
Erin Kaltenbrun ◽  
Nicole J Newman ◽  
Jeffrey Everitt ◽  
...  

Despite multiple possible oncogenic mutations in the proto-oncogene KRAS, unique subsets of these mutations are detected in different cancer types. As KRAS mutations occur early, if not being initiating, these mutational biases are ostensibly a product of how normal cells respond to the encoded oncoprotein. Oncogenic mutations can impact not only the level of active oncoprotein, but also engagement with effectors and other proteins. To separate these two effects, we generated four novel inducible Kras alleles encoded by the biochemically distinct mutations G12D versus Q61R encoded by native (nat) rare versus common (com) codons to produce either low or high protein levels. Each allele induced a distinct transcriptional response in normal cells. At one end of the spectrum, the KrasnatG12D allele induced transcriptional hallmarks suggestive of an expansion of multipotent cells, while at the other end, the KrascomQ61R allele exhibited all the hallmarks of oncogenic stress and inflammation. Further, this dramatic difference in the transcriptomes of normal cells appears to be a product of signaling differences due to increased protein expression as well as the specific mutation. To determine the impact of these distinct responses on RAS mutational patterning in vivo, all four alleles were globally activated, revealing that hematolymphopoietic lesions were sensitive to the level of active oncoprotein, squamous tumors were sensitive to the G12D mutant, while carcinomas were sensitive to both these features. Thus, we identify how specific KRAS mutations uniquely signal to promote the conversion of normal hematopoietic, epithelial, or squamous cells towards a tumorigenic state.

Blood ◽  
2011 ◽  
Vol 118 (6) ◽  
pp. 1699-1709 ◽  
Author(s):  
Isabelle Ligi ◽  
Stéphanie Simoncini ◽  
Edwige Tellier ◽  
Paula Frizera Vassallo ◽  
Florence Sabatier ◽  
...  

Abstract Low birth weight (LBW) is associated with increased risk of cardiovascular diseases at adulthood. Nevertheless, the impact of LBW on the endothelium is not clearly established. We investigate whether LBW alters the angiogenic properties of cord blood endothelial colony forming cells (LBW-ECFCs) in 25 preterm neonates compared with 25 term neonates (CT-ECFCs). We observed that LBW decreased the number of colonies formed by ECFCs and delayed the time of appearance of their clonal progeny. LBW dramatically reduced LBW-ECFC capacity to form sprouts and tubes, to migrate and to proliferate in vitro. The angiogenic defect of LBW-ECFCs was confirmed in vivo by their inability to form robust capillary networks in Matrigel plugs injected in nu/nu mice. Gene profile analysis of LBW-ECFCs demonstrated an increased expression of antiangiogenic genes. Among them, thrombospondin 1 (THBS1) was highly expressed at RNA and protein levels in LBW-ECFCs. Silencing THBS1 restored the angiogenic properties of LBW-ECFCs by increasing AKT phosphorylation. The imbalance toward an angiostatic state provide a mechanistic link between LBW and the impaired angiogenic properties of ECFCs and allows the identification of THBS1 as a novel player in LBW-ECFC defect, opening new perspectives for novel deprogramming agents.


Blood ◽  
2006 ◽  
Vol 107 (6) ◽  
pp. 2409-2414 ◽  
Author(s):  
Mojgan Ahmadzadeh ◽  
Steven A. Rosenberg

Abstract Interleukin-2 (IL-2) is historically known as a T-cell growth factor. Accumulating evidence from knockout mice suggests that IL-2 is crucial for the homeostasis and function of CD4+CD25+ regulatory T cells in vivo. However, the impact of administered IL-2 in an immune intact host has not been studied in rodents or humans. Here, we studied the impact of IL-2 administration on the frequency and function of human CD4+CD25hi T cells in immune intact patients with melanoma or renal cancer. We found that the frequency of CD4+CD25hi T cells was significantly increased after IL-2 treatment, and these cells expressed phenotypic markers associated with regulatory T cells. In addition, both transcript and protein levels of Foxp3, a transcription factor exclusively expressed on regulatory T cells, were consistently increased in CD4 T cells following IL-2 treatment. Functional analysis of the increased number of CD4+CD25hi T cells revealed that this population exhibited potent suppressive activity in vitro. Collectively, our results demonstrate that administration of high-dose IL-2 increased the frequency of circulating CD4+CD25hi Foxp3+ regulatory T cells. Our findings suggest that selective inhibition of IL-2-mediated enhancement of regulatory T cells may improve the therapeutic effectiveness of IL-2 administration. (Blood. 2006;107:2409-2414)


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 41-42
Author(s):  
Gabriela Krivdova ◽  
Veronique Voisin ◽  
Sajid Marhon ◽  
Schoof E Erwin ◽  
Martino Gabra ◽  
...  

Background: Deregulation of self-renewal and differentiation programs are central to the pathogenesis of hematologic malignancies. MicroRNAs (miRNAs) represent a large class of post-transcriptional regulators that mediate repression of multiple target mRNAs and are frequently deregulated in acute myeloid leukemia (AML). From our previous in vivo miRNA enforced expression screen in human hematopoietic stem and progenitor cells (HSPC), we identified miR-130a as a regulator of self-renewal and lineage specification. Enforced expression of miR-130a in human cord blood (CB) derived HSPC caused an expansion of HSC, block in erythroid differentiation and abnormal myelopoiesis in xenografts. Thus, we examined miR-130a expression in AML and found miR-130a to be specifically upregulated in t(8,21) AML. The translocation t(8,21) is one of the most common karyotypic abnormalities in AML, accounting up to 10% of all AML cases. The consequence of this translocation is a fusion of AML1 and ETO genes, resulting in a formation of the AML1-ETO (AE) oncofusion protein, which acts as a dominant repressor of the wild type AML1/RUNX1. The ETO moiety mediates the recruitment of the nuclear corepressor (NCoR) and histone deacetylases (HDAC1-3) to block RUNX1 target gene expression. This prevents myeloid maturation, apoptosis and promotes leukemogenesis. Here we investigated the molecular mechanism of miR-130a in t(8,21) AML and how it contributes to the leukemogenesis of this AML subtype. Results: Using the TCGA dataset and our PMCC patient cohort, we identified miR-130a to be upregulated in t(8,21) AML and high miR-130a expression was associated with worse patient overall survival. To interrogate the functional significance of elevated miR-130a in t(8,21) AML, we performed knock-down (KD) experiments in the Kasumi-1 cell line, which represents a well characterized model system for t(8,21) AML. Notably, KD of miR-130a induced a significant reduction in the CD34+ cell population and an increase in differentiated CD11b+CD15+ and pro-apoptotic annexin V+ cells. We next examined the impact of miR-130a KD in CD34+ blasts from primary t(8,21) AML patient samples. In line with our findings in the Kasumi-1 cells, miR-130a KD decreased the proportion of CD34+ cells and increased the proportion of differentiated CD11b+CD15+ blasts. To investigate the effect of miR-130a KD on leukemic engraftment in vivo, we transduced CD34+ blasts from 2 patient samples and transplanted them into NSG-GF mice. miR-130a KD decreased leukemic engraftment and the proportion of transduced cells, corroborating the functional significance of high miR-130a expression in t(8,21) AML. To investigate the mechanistic action of miR-130a, we performed label-free semi-quantitative proteomics in human CB derived HSPC to uncover miR-130a targets. Surprisingly, we found the beta subunit of RUNX1, CBFb, and Transducin Beta Like 1 X-Linked Receptor 1, TBL1XR1, to be among the most repressed targets. TBL1XR1 is a component of the nuclear receptor corepressor (NCoR) complex and is involved in NCoR degradation. Thus, we performed western and immunoprecipitations (IP) assays in Flag-AE Kasumi-1 cells following miR-130a KD to examine changes in the expression of proteins associated with the AE complex. We observed increased expression of CBFβ, TBL1XR1 and CEBPA with miR-130a KD. Notably, miR-130a KD resulted in a dramatic decrease of NCoR protein levels. IP of Flag-AE showed decreased association of CBFβ and NCoR with AE, despite unaltered protein levels of AE. To investigate changes in binding occupancy of Flag-AE after miR-130a KD, we performed Cleavage Under the Targets and Release Using Nuclease (CUT&RUN) assay. Surprisingly, we observed 2-fold gain of AE sites in miR-130a KD sample compared to control. De novo motif enrichment analysis showed loss of motives for ETS and HOX transcription factors known to associate with AE following miR-130a KD. Genomic distribution of the peaks revealed a dramatic shift of AE peaks away from the promoter region to introns in miR-130a KD. Pathway enrichment analysis of the unique peaks gained in miR-130a KD showed stress responses and organelle disassembly, in line with the differentiation phenotype observed with miR-130a KD. Collectively, we uncovered a novel mechanism by which miR-130a reinforces the aberrant AE molecular program by controlling the composition and binding of the AE complex. Disclosures Dick: Bristol-Myers Squibb/Celgene: Research Funding.


2021 ◽  
Vol 22 (19) ◽  
pp. 10219
Author(s):  
Shirin Hafezi ◽  
Maha Saber-Ayad ◽  
Wael M. Abdel-Rahman

The most frequent mutated oncogene family in the history of human cancer is the RAS gene family, including NRAS, HRAS, and, most importantly, KRAS. A hallmark of pancreatic cancer, recalcitrant cancer with a very low survival rate, is the prevalence of oncogenic mutations in the KRAS gene. Due to this fact, studying the function of KRAS and the impact of its mutations on the tumor microenvironment (TME) is a priority for understanding pancreatic cancer progression and designing novel therapeutic strategies for the treatment of the dismal disease. Despite some recent enlightening studies, there is still a wide gap in our knowledge regarding the impact of KRAS mutations on different components of the pancreatic TME. In this review, we will present an updated summary of mutant KRAS role in the initiation, progression, and modulation of the TME of pancreatic ductal adenocarcinoma (PDAC). This review will highlight the intriguing link between diabetes mellitus and PDAC, as well as vitamin D as an adjuvant effective therapy via TME modulation of PDAC. We will also discuss different ongoing clinical trials that use KRAS oncogene signaling network as therapeutic targets.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Siqi Li ◽  
Christopher M Counter

RAS genes are commonly mutated in human cancer. Despite many possible mutations, individual cancer types often have a ‘tropism’ towards a specific subset of RAS mutations. As driver mutations, these patterns ostensibly originate from normal cells. High oncogenic RAS activity causes oncogenic stress and different oncogenic mutations can impart different levels of activity, suggesting a relationship between oncoprotein activity and RAS mutation tropism. Here, we show that changing rare codons to common in the murine Kras gene to increase protein expression shifts tumors induced by the carcinogen urethane from arising from canonical Q61 to biochemically less active G12 Kras driver mutations, despite the carcinogen still being biased towards generating Q61 mutations. Conversely, inactivating the tumor suppressor p53 to blunt oncogenic stress partially reversed this effect, restoring Q61 mutations. One interpretation of these findings is that the RAS mutation tropism of urethane arises from selection in normal cells for specific mutations that impart a narrow window of signaling that promotes proliferation without causing oncogenic stress.


2019 ◽  
Vol 41 (3) ◽  
pp. 334-344
Author(s):  
Amrendra Mishra ◽  
Fatemeh Emamgholi ◽  
Zulrahman Erlangga ◽  
Björn Hartleben ◽  
Kristian Unger ◽  
...  

Abstract Beyond the nearly uniform presence of KRAS mutations, pancreatic cancer is increasingly recognized as a heterogeneous disease. Preclinical in vivo model systems exist, but with the advent of precision oncology, murine models with enhanced genetic flexibility are needed to functionally annotate genetic alterations found in the human malignancy. Here, we describe the generation of focal gene disruptions and large chromosomal deletions via inducible and pancreas-specific expression of Cas9 in adult mice. Experimental mice are derived on demand directly from genetically engineered embryonic stem cells, without the need for further intercrossing. To provide initial validation of our approach, we show that disruption of the E3 ubiquitin ligase Rnf43 accelerates KrasG12D-dependent tumourigenesis. Moreover, we demonstrate that this system can be used to rapidly interrogate the impact of complex cancer-associated alleles through the generation of a previously unstudied 1.2 megabase deletion surrounding the CDKN2A and CDKN2B tumour suppressors. Thus, our approach is capable of reproducibly generating biallelic and precise loss of large chromosomal fragments that, in conjunction with mutant Kras, leads to development of pancreatic ductal adenocarcinoma with full penetrance.


Nutrients ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2766
Author(s):  
Magdalena Kozłowska ◽  
Małgorzata M. Brzóska ◽  
Joanna Rogalska ◽  
Anna Galicka

This study examined whether a polyphenol-rich extract from the berries of Aronia melanocarpa L. (AE; chokeberries) may protect from the impact of cadmium (Cd) on the metabolism of collagen in the liver. The study was conducted in an experimental model (rats that were fed a diet containing 1 or 5 mg Cd/kg for 3–24 months) of human exposure to this xenobiotic during a lifetime. The concentration of total collagen and the expression of collagen types I and III at the mRNA and protein levels, as well as the concentrations of matrix metalloproteinases (MMP-1 and MMP-2) and their tissue inhibitors (TIMP-1 and TIMP-2), were assayed. The administration of Cd and/or AE had only a slight and temporary impact on the concentration of total collagen in the liver. The supplementation with AE significantly prevented Cd-mediated changes in the expression of collagen types I and III at the mRNA and protein levels and their ratio (collagen III/collagen I), as well as a rise in the concentrations of MMPs and TIMPs in this organ. The results allow the conclusion that the intake of chokeberry products in the case of Cd intoxication may be effective in prevention from this xenobiotic-induced disturbance in collagen homeostasis in the liver.


2005 ◽  
Vol 25 (5) ◽  
pp. 1989-1999 ◽  
Author(s):  
Seong-Eun Park ◽  
Jianming Xu ◽  
Antonina Frolova ◽  
Lan Liao ◽  
Bert W. O'Malley ◽  
...  

ABSTRACT We previously identified a coregulator, repressor of estrogen receptor activity (REA), that directly interacts with estrogen receptor (ER) and represses ER transcriptional activity. Decreasing the intracellular level of REA by using small interfering RNA knockdown or antisense RNA approaches in cells in culture resulted in a significant increase in the level of up-regulation of estrogen-stimulated genes. To elucidate the functional activities of REA in vivo, we have used targeted disruption to delete the REA gene in mice. The targeting vector eliminated, by homologous recombination, the REA exon sequences encoding amino acids 12 to 201, which are required for REA repressive activity and for interaction with ER. The viability of heterozygous animals was similar to that of the wild type, whereas homozygous animals did not develop, suggesting a crucial role for REA in early development. Female, but not male, heterozygous animals had an increased body weight relative to age-matched wild-type animals beginning after puberty. REA mRNA and protein levels in uteri of heterozygous animals were half that of the wild type, and studies with heterozygous animals revealed a greater uterine weight gain and epithelial hyperproliferation in response to estradiol (E2) and a substantially greater stimulation by E2 of a number of estrogen up-regulated genes in the uterus. Even more dramatic in REA heterozygous animals was the loss of down regulation by E2 of genes in the uterus that are normally repressed by estrogen in wild-type animals. Mouse embryo fibroblasts derived from heterozygous embryos also displayed a greater transcriptional response to E2. These studies demonstrate that REA is a significant modulator of estrogen responsiveness in vivo: it normally restrains estrogen actions, moderating ER stimulation and enhancing ER repression of E2-regulated genes.


2005 ◽  
Vol 289 (5) ◽  
pp. H1843-H1850 ◽  
Author(s):  
Ali Razmara ◽  
Diana N. Krause ◽  
Sue P. Duckles

Activation of inflammatory mechanisms contributes to cerebrovascular pathophysiology. Male gender is associated with increased stroke risk, yet little is known about the effects of testosterone in the cerebral circulation. Therefore, we explored the impact of testosterone treatment on cerebrovascular inflammation with both in vivo and in vitro models of inflammation. We hypothesized that testosterone would augment the expression of two vascular markers of cellular inflammation, cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS). Using four groups of male rats [intact, orchiectomized (ORX), and ORX treated with either testosterone (ORXT) or the testosterone metabolite 17β-estradiol (ORXE)], we determined effects of the sex hormones on cerebrovascular inflammation after intraperitoneal LPS injection. Western blot analysis showed that induction of inflammatory markers was increased in cerebral blood vessels from ORXT rats compared with intact or ORX rats. In contrast, in cerebral blood vessels from ORXE rats, there was a significant decrease in endotoxin-induced COX-2 and iNOS protein levels. Confocal microscopy of cerebral blood vessels from ORXT rats showed increased COX-2 and iNOS immunoreactivity in both endothelial and smooth muscle cells after LPS treatment. In vitro incubation with LPS also induced COX-2 in pial vessels isolated from the four animal treatment groups, with the greatest induction observed in ORXT vessels compared with the ORX and ORXE groups. Production of PGE2, a principal COX-2-derived prostaglandin end product, was also greatest in cerebral vessels isolated from ORXT rats. In conclusion, testosterone increases cerebrovascular inflammation; this effect may contribute to stroke differences between men and women.


2021 ◽  
Author(s):  
Le Wang ◽  
Vincent R. Mirabella ◽  
Rujia Dai ◽  
Xiao Su ◽  
Ranjie Xu ◽  
...  

Mutations in many synaptic genes are associated with autism spectrum disorders (ASDs), suggesting that synaptic dysfunction is a key driver of ASD pathogenesis. Among these mutations, the R451C-substitution in the NLGN3 gene that encodes the postsynaptic adhesion molecule Neuroligin-3 is noteworthy because it was the first specific mutation linked to ASDs. In mice, the corresponding Nlgn3 R451C-knockin mutation recapitulates social interaction deficits of ASD patients and produces synaptic abnormalities, but the impact of the NLGN3 R451C-mutation on human neurons has not been investigated. Here, we generated human knock-in neurons with the NLGN3 R451C-mutation. Strikingly, analyses of NLGN3 R451C-mutant neurons revealed that the R451C-mutation decreased NLGN3 protein levels but enhanced the strength of excitatory synapses without affecting inhibitory synapses. No significant cell death and endoplasmic reticulum stress were detected. Importantly, the augmentation of excitatory transmission was confirmed in vivo with human neurons transplanted into mouse forebrain. Using single-cell RNA-seq experiments with co-cultured excitatory and inhibitory NLGN3 R451C-mutant neurons, we identified differentially expressed genes in relatively mature human neurons that corresponded to synaptic gene expression networks. Moreover, gene ontology and enrichment analyses revealed convergent gene networks associated with ASDs and other mental disorders. Our findings suggest that the NLGN3 R451C-mutation induces a gain-of-function enhancement in excitatory synaptic transmission that may contribute to the pathophysiology of ASDs.


Sign in / Sign up

Export Citation Format

Share Document