scholarly journals Transcriptome features of trained immunity in Drosophila

2021 ◽  
Author(s):  
Naoyuki Fuse ◽  
Chisaki Okamori ◽  
Chang Tang ◽  
Kikuko Hirai ◽  
Ryoma Okaji ◽  
...  

Immune memory is an ability of organisms to potentiate immune responses at secondary infection. Current studies have revealed that innate immunity, as well as adaptive immunity, exhibits the memory character called "trained immunity". Although it is suggested that epigenetic reprogramming plays important roles in trained immunity, its underlying mechanism is not fully understood, especially on the individual level. Here we established experimental systems for detecting trained immunity in Drosophila melanogaster. Namely, training infection with low-pathogenic bacteria enhanced the survival rate of the flies at subsequent challenge infection with high-pathogenic bacteria. We found that among low-pathogenic bacteria, Micrococcus luteus (Ml) and Salmonella typhimurium (St) mediated apparent training effects in fly, but seemed to act through different ways. Ml left training effects even after its removal from flies, while living St persisted inside flies for a long time. Our RNA-Seq analysis revealed that Ml-training enhanced the expression of immune-related genes during the challenge infection, but did not do so without challenge infection. In contrast, St-training maintained high expression of the immune-related genes with or without challenge. These results suggest that training effects with Ml and St were due to memory and persistence of immune responses, respectively. Furthermore, we searched the factor involved in Ml-training and identified a candidate, Ada2b, which is a component of the histone modification complex. We found that the Ada2b RNAi and mutant flies showed dampened enhancement of survival rates after Ml-training. These results suggest that Ada2b is involved in the Drosophila trained immunity.

2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Jiajia Wang ◽  
Jitao Li ◽  
Qianqian Ge ◽  
Zhao Chen ◽  
Jian Li

The Exopalaemon carinicauda could be a useful crustacean laboratory animal in many research fields. We newly established an inbred line of Exopalaemon carinicauda named EC4 inbred line by brother×sister mating and keeping to F11 generation. Trends in heterozygosity in the process of producing EC4 inbred line were examined through the characterization of polymorphisms based on gene frequencies of SNP and EST-SSR loci. The results demonstrated that the number of alleles (N), observed heterozygosity (Ho), expected heterozygosity (He), and polymorphism information content (PIC) gradually decreased with the increase of inbreeding generations. The genetic detection results indicated that 9 (29.03%, 9/31) of the SNP loci and 15 (32.61%, 15/46) of the EST-SSR loci were homozygous in F11 generation of EC4 inbred line. The variation of the growth-related traits, the immune responses, and antioxidant status were described in experimental full-sibling inbred populations of E. carinicauda at five levels of inbreeding coefficient (F=0.785, F=0.816, F=0.859, F=0.886, F=0.908) under controlled laboratory conditions. The body weight, body length, and survival rate in EC4 inbred line of all generations were less than the control population. Inbreeding affected the antibacterial activity, phenoloxidase (PO) activity, and superoxide dismutase (SOD) which decreased at the eleventh generation of EC4 inbred line. This study demonstrated that inbreeding had a negative effect on the economic traits and immune response, but our inbred line was established successfully until F11 and confirmed by genetic detection using SNP and EST-SSR loci.


2020 ◽  
pp. 1-9
Author(s):  
Anaisa Valido Ferreira ◽  
Jorge Domiguéz-Andrés ◽  
Mihai Gheorghe Netea

Immunological memory is classically attributed to adaptive immune responses, but recent studies have shown that challenged innate immune cells can display long-term functional changes that increase nonspecific responsiveness to subsequent infections. This phenomenon, coined <i>trained immunity</i> or <i>innate immune memory</i>, is based on the epigenetic reprogramming and the rewiring of intracellular metabolic pathways. Here, we review the different metabolic pathways that are modulated in trained immunity. Glycolysis, oxidative phosphorylation, the tricarboxylic acid cycle, amino acid, and lipid metabolism are interplaying pathways that are crucial for the establishment of innate immune memory. Unraveling this metabolic wiring allows for a better understanding of innate immune contribution to health and disease. These insights may open avenues for the development of future therapies that aim to harness or dampen the power of the innate immune response.


2011 ◽  
Vol 24 (1) ◽  
pp. 100-107 ◽  
Author(s):  
Tingting Xiang ◽  
Na Zong ◽  
Jie Zhang ◽  
Jinfeng Chen ◽  
Mingsheng Chen ◽  
...  

Plant cell surface-localized receptor kinases such as FLS2, EFR, and CERK1 play a crucial role in detecting invading pathogenic bacteria. Upon stimulation by bacterium-derived ligands, FLS2 and EFR interact with BAK1, a receptor-like kinase, to activate immune responses. A number of Pseudomonas syringae effector proteins are known to block immune responses mediated by these receptors. Previous reports suggested that both FLS2 and BAK1 could be targeted by the P. syringae effector AvrPto to inhibit plant defenses. Here, we provide new evidence further supporting that FLS2 but not BAK1 is targeted by AvrPto in plants. The AvrPto-FLS2 interaction prevented the phosphorylation of BIK1, a downstream component of the FLS2 pathway.


2005 ◽  
Vol 6 (1) ◽  
pp. 105-118 ◽  
Author(s):  
G. M. Nava ◽  
L. R. Bielke ◽  
T. R. Callaway ◽  
M. P Castañeda

AbstractThe intestinal mucosa represents the most active defense barrier against the continuous challenge of food antigens and pathogenic microorganisms present in the intestinal lumen. Protection against harmful agents is conferred by factors such as gastric acid, peristalsis, mucus, intestinal proteolysis, and the intestinal biota. The establishment of beneficial bacterial communities and metabolites from these complex ecosystems has varying consequences for host health. This hypothesis has led to the introduction of novel therapeutic interventions based on the consumption of beneficial bacterial cultures. Mechanisms by which probiotic bacteria affect the microecology of the gastrointestinal tract are not well understood, but at least three mechanisms of action have been proposed: production/presence of antibacterial substances (e.g., bacteriocins or colicins), modulation of immune responses and specific competition for adhesion receptors to intestinal epithelium. The rapid establishment of bacterial communities has been thought to be essential for the prevention of colonization by pathogenic bacteria. Some animal models suggest that the reduction in bacterial translocation in neonatal animals could be associated with an increase in intestinal bacterial communities and bacteriocin-like inhibitory substances produced by these species. This review emphasizes the role of the intestinal microbiota in the reduction of the gastrointestinal infections and draws heavily on studies in poultry.


Parasitology ◽  
2003 ◽  
Vol 126 (2) ◽  
pp. 125-134 ◽  
Author(s):  
R. IGLESIAS ◽  
A. PARAMÁ ◽  
M. F. ÁLVAREZ ◽  
J. LEIRO ◽  
F. M. UBEIRA ◽  
...  

Philasterides dicentrarchi is a histophagous ciliate causing systemic scuticociliatosis in cultured turbot. This study demonstrates that turbot which survive this disease have serum antibodies that recognize ciliary antigens of this ciliate in ELISA and immobilize/agglutinate the ciliate in vitro. Mouse sera raised against ciliary antigens and integral membrane proteins are likewise capable of immobilizing/agglutinating the ciliates, indicating that P. dicentrarchi, like other ciliates, expresses surface immobilization antigens. Furthermore, the antigen agglutinating reaction induces the parasite to shed its surface antigens rapidly, replacing them with others with different specific serology. This antigen shedding and variation response is similar to that detected in other protozoan parasites. Immunization of turbot with ciliate lysate plus adjuvant or with formalin-fixed ciliates induced synthesis of agglutinating antibodies and conferred a degree of protection against challenge infection, suggesting that the response to surface antigens may play an important role in defence against this pathogen, SDS–PAGE and immunoblotting studies indicated the existence of a predominant polypeptide of about 38 kDa in the ciliary antigen and membrane protein fractions, and this may be the principal surface antigen of P. dicentrarchi.


2017 ◽  
Vol 284 (1869) ◽  
pp. 20171583 ◽  
Author(s):  
Imroze Khan ◽  
Arun Prakash ◽  
Deepa Agashe

Under strong pathogen pressure, insects often evolve resistance to infection. Many insects are also protected via immune memory (immune priming), whereby sublethal exposure to a pathogen enhances survival after secondary infection. Theory predicts that immune memory should evolve when the pathogen is highly virulent, or when pathogen exposure is relatively rare. However, there are no empirical tests of these hypotheses, and the adaptive benefits of immune memory relative to direct resistance against a pathogen are poorly understood. To determine the selective pressures and ecological conditions that shape immune evolution, we imposed strong pathogen selection on flour beetle ( Tribolium castaneum ) populations, infecting them with Bacillus thuringiensis (Bt) for 11 generations. Populations injected first with heat-killed and then live Bt evolved high basal resistance against multiple Bt strains. By contrast, populations injected only with a high dose of live Bt evolved a less effective but strain-specific priming response. Control populations injected with heat-killed Bt did not evolve priming; and in the ancestor, priming was effective only against a low Bt dose. Intriguingly, one replicate population first evolved priming and subsequently evolved basal resistance, suggesting the potential for dynamic evolution of different immune strategies. Our work is the first report showing that pathogens can select for rapid modulation of insect priming ability, allowing hosts to evolve divergent immune strategies (generalized resistance versus specific immune memory) with potentially distinct mechanisms.


Cell ◽  
2018 ◽  
Vol 175 (6) ◽  
pp. 1463-1465 ◽  
Author(s):  
Mihai G. Netea ◽  
Leo A.B. Joosten

2014 ◽  
Vol 5 (1) ◽  
pp. 38-42 ◽  
Author(s):  
Sophie Poole ◽  
Sim K Singhrao ◽  
St John Crean

Periodontal disease (PD) is an inflammatory disease affecting tooth-supporting tissues in which interaction of specific bacteria and the host’s immune responses play a pivotal role. The pathogenic bacteria associated with PD are a source of systemic inflammation as they have the ability to enter systemic circulation during everyday tasks such as brushing teeth and chewing food. Alzheimer’s disease (AD) is a form of dementia whereby inflammation is thought to play a key role in its pathogenesis and the risk of developing the disease increasing with age. The exact aetiology of the late-onset AD is unknown but peripheral infections are being considered as a potential risk factor.


2021 ◽  
Author(s):  
Preethi Eldi ◽  
Tamara H Cooper ◽  
Natalie A Prow ◽  
Liang Liu ◽  
Gary K Heinemann ◽  
...  

The ongoing COVID-19 pandemic perpetuated by SARS-CoV-2 variants, has highlighted the continued need for broadly protective vaccines that elicit robust and durable protection. Here, the vaccinia virus-based, replication-defective Sementis Copenhagen Vector (SCV) was used to develop a first-generation COVID-19 vaccine encoding the spike glycoprotein (SCV-S). Vaccination of mice rapidly induced polyfunctional CD8 T cells with cytotoxic activity and robust Th1-biased, spike-specific neutralizing antibodies, which are significantly increased following a second vaccination, and contained neutralizing activity against the alpha and beta variants of concern. Longitudinal studies indicated neutralizing antibody activity was maintained up to 9 months post-vaccination in both young and aging mice, with durable immune memory evident even in the presence of pre-existing vector immunity. This immunogenicity profile suggests a potential to expand protection generated by current vaccines in a heterologous boost format, and presents a solid basis for second-generation SCV-based COVID-19 vaccine candidates incorporating additional SARS-CoV-2 immunogens.


Sign in / Sign up

Export Citation Format

Share Document