scholarly journals Distinct cDC subsets co-operate in CD40 agonist response while suppressive microenvironments and lack of antigens subvert efficacy

2021 ◽  
Author(s):  
Aleksandar Murgaski ◽  
Mate Kiss ◽  
Helena Van Damme ◽  
Daliya Kancheva ◽  
Isaure Vanmeerbeek ◽  
...  

Agonistic αCD40 therapy has shown to inhibit cancer progression, but only in a fraction of patients. Hence, understanding the cancer cell-intrinsic and microenvironmental determinants of αCD40 therapy response is crucial to identify responsive patient populations and design efficient combination treatments. Here, we showed that the therapeutic efficacy of αCD40 in responder melanoma tumours, relied on pre-existing cDC1-primed CD8+ T cells, however cDC1s were dispensable after αCD40 administration. Surprisingly, in response to αCD40 the abundance of activated cDCs, potentially derived from cDC2s increased, thereby further activating antitumour CD8+ T cells. Hence, distinct cDC subsets are required to induce αCD40 responses. By contrast, lung tumours, characterised by a high abundance of macrophages, were resistant to αCD40 therapy. Combining αCD40 therapy with macrophage depletion led to tumour growth inhibition only in the presence of strong neoantigens. Accordingly, treatment with immunogenic cell-death inducing chemotherapy sensitised non-immunogenic tumours to αCD40 therapy.

2019 ◽  
Author(s):  
Helene Rundqvist ◽  
Pedro Veliça ◽  
Laura Barbieri ◽  
Paulo A. Gameiro ◽  
Pedro P. Cunha ◽  
...  

AbstractExercise has a range of effects on metabolism. In animal models, repeated exertion reduces malignant tumour progression, and clinically, exercise can improve outcome for cancer patients. The etiology of the effect of exercise on tumour progression is unclear, as are the cellular actors involved. We show here that exercise-induced reduction in tumour growth is dependent on CD8+ T cells and that lactate, which is produced at high levels during exertion, increases proliferative capacity and cytotoxicity of CD8+ T cells. We found that at elevated levels lactate is used as a fuel during T cell activation. We further found that injection of lactate into animals can reduce malignant tumour growth in a dose-and CD8+ T cell-dependent manner. These data demonstrate that lactate can act to increase the anti-tumour activity of cytotoxic T cells, and in so doing, reduce cancer progression.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A480-A480
Author(s):  
Jonas Van Audenaerde ◽  
Elly Marcq ◽  
Bianca von Scheidt ◽  
Ashleigh Davey ◽  
Amanda Oliver ◽  
...  

BackgroundWith the poorest 5-year survival of all cancers, improving treatment for pancreatic cancer is one of the biggest challenges in cancer research. In this era of combination immunotherapies, we sought to explore the potential of combining both priming and activation of the immune system. To achieve this, we combined a CD40 agonist with interleukin-15 and tested its potential in pancreatic cancer.MethodsTwo different mouse models of pancreatic cancer were used to assess the potential of this combination regimen. Therefore, effects on tumour growth kinetics and survival were charted. Differential effects on immune signatures was investigated using RNA sequencing. Functional immune subset involvement was tested using different immune depletion experiments and multicolour flow cytometry in different relevant immune sites. Immune memory was checked using re-challenge experiments.ResultsWe demonstrated profound reduction in tumour growth and increased survival of mice with the majority of mice being cured when both agents were combined, including an unprecedented dose reduction of CD40 agonist without losing any efficacy (fig 1). RNA sequencing analysis showed involvement of natural killer cell and T cell mediated anti-tumour responses and the importance of antigen-presenting cell pathways. This combination resulted in enhanced infiltration of tumours by both cytotoxic T cells and natural killer cells, as well as a striking increase in the ratio of CD8+ T cells over T regulatory cells. We also observed a significant increase in numbers of dendritic cells in tumour draining lymph nodes, particularly CD103+ dendritic cells with cross-presentation potential. A critical role for CD8+ T cells and involvement of natural killer cells in the anti-tumour effect was highlighted. Importantly, strong immune memory was established, with an increase in memory CD8+ T cells only when both interleukin-15 and the CD40 agonist were combined.Abstract 453 Figure 1Tumour kinetics and survival in Panc02 (left) and KPC (right) pancreatic cancer mouse modelsConclusionsWe demonstrated profound synergistic anti-tumour effects upon combination of CD40 agonist and interleukin-15 treatment in mouse models of pancreatic cancer. This preclinical data supports initiation of a first-in-human clinical trial with this combination immunotherapy strategy in pancreatic cancer.


2020 ◽  
Vol 8 (1) ◽  
pp. e000325 ◽  
Author(s):  
Luna Minute ◽  
Alvaro Teijeira ◽  
Alfonso R Sanchez-Paulete ◽  
Maria C Ochoa ◽  
Maite Alvarez ◽  
...  

BackgroundThe immune response to cancer is often conceptualized with the cancer immunity cycle. An essential step in this interpretation is that antigens released by dying tumors are presented by dendritic cells to naive or memory T cells in the tumor-draining lymph nodes. Whether tumor cell death resulting from cytotoxicity, as mediated by T cells or natural killer (NK) lymphocytes, is actually immunogenic currently remains unknown.MethodsIn this study, tumor cells were killed by antigen-specific T-cell receptor (TCR) transgenic CD8 T cells or activated NK cells. Immunogenic cell death was studied analyzing the membrane exposure of calreticulin and the release of high mobility group box 1 (HMGB1) by the dying tumor cells. Furthermore, the potential immunogenicity of the tumor cell debris was evaluated in immunocompetent mice challenged with an unrelated tumor sharing only one tumor-associated antigen and by class I major histocompatibility complex (MHC)-multimer stainings. Mice deficient inBatf3,Ifnar1andSting1were used to study mechanistic requirements.ResultsWe observe in cocultures of tumor cells and effector cytotoxic cells, the presence of markers of immunogenic cell death such as calreticulin exposure and soluble HMGB1 protein. Ovalbumin (OVA)-transfected MC38 colon cancer cells, exogenously pulsed to present the gp100 epitope are killed in culture by mouse gp100-specific TCR transgenic CD8 T cells. Immunization of mice with the resulting destroyed cells induces epitope spreading as observed by detection of OVA-specific T cells by MHC multimer staining and rejection of OVA+EG7 lymphoma cells. Similar results were observed in mice immunized with cell debris generated by NK-cell mediated cytotoxicity. Mice deficient inBatf3-dependent dendritic cells (conventional dendritic cells type 1, cDC1) fail to develop an anti-OVA response when immunized with tumor cells killed by cytotoxic lymphocytes. In line with this, cultured cDC1 dendritic cells uptake and can readily cross-present antigen from cytotoxicity-killed tumor cells to cognate CD8+T lymphocytes.ConclusionThese results support that an ongoing cytotoxic antitumor immune response can lead to immunogenic tumor cell death.


2021 ◽  
Vol 39 (3_suppl) ◽  
pp. 116-116
Author(s):  
Priya Jayachandran ◽  
Joanne Xiu ◽  
Shivani Soni ◽  
Richard M. Goldberg ◽  
Benjamin Adam Weinberg ◽  
...  

116 Background: Cachexia affects many cancer patients. Growth differentiation factor-15 (GDF15) is a protein that regulates weight and the stress response of cells. The GDF15 gene encodes a ligand of TGF-beta that triggers cachexia and modulates the progression from tumorigenesis to metastasis. Inhibition of GDF15 with an antibody restored muscle mass and fat in animal models. Serum levels rise in proportion to the progression of colon cancer, predict outcome, and have been correlated with CEA. Methods: We retrospectively reviewed 7607 CRC tumors profiled by Caris Life Sciences (Phoenix, AZ) from 2019 to 2020. Profiling included whole transcriptome sequencing (RNA-Seq by NovoSeq). Tumor mutational burden, mismatch repair status, and pathway genomic alterations were evaluated. QuantiSEQ was used to assess immune cell infiltration in the tumor microenvironment. Results: GDF15 expression ranged from 0 to 593 transcripts per million (TPM) with median of 30 (IQR = 15.02). There was no association with age, sex, or primary tumor sidedness. MSI-H/dMMR tumors had higher GDF15 expression (median 37 vs 30, p = 0.0004); TMB > = 17 tumors was seen in 5.9% of bottom quartile (Q1) GDF15 expressors and 8.3% of top quartile (Q4). PDL1 IHC positivity was inversely correlated with GDF15 expression (7.1% in Q1 vs. 2.6% in Q4, p < 0.0001). Genomic alterations associated with higher GDF15 expression (Q4 vs Q1) included genes on TGF-B (SMAD2/4), PI3K (PIK3CA, MTOR), chromatin remodeling (ARID1A, KMT2C), DDR (ATM) and Wnt pathway (APC); those inversely associated included MYC CNA and TP53. Q1 tumors had higher CNA of ERBB2 and FGFR1. Relative neutrophils and NK cells in the TME increased from Q1 to Q4 (p < 0.001). There was a decrease in CD8+ T-cells and Treg cells from Q1 to Q4. Conclusions: GDF15 expression correlates with increased dMMR/MSI-H and TMB, but not with PDL1 expression. Mutations and activated pathways associated with GDF15 expression may explain increased cachexia with more aggressive disease. The association with chromatin remodeling may warrant therapies targeting histone modification and epigenetics. The increase in NK cells but decrease in CD8+ T cells in the TME with increasing GDF15 suggests approaches to treatment. Higher CD8+ lymphocyte counts correlate with PFS with immunotherapy. Anti-PD-L1 therapy reinvigorates the killing function of CD8+ T cells. The decrease in CD8+ T cells and PDL1 positivity with rising GDF15 suggests worse outcome and a lack of response to anti-PDL1 therapy. NK cell checkpoint inhibitors, CARs, and an anti-GFRAL antibody are now in clinical trials and might be utilized in high GDF15 cancers. GDF15 is emerging as a target in the treatment of obesity and cachexia and as a prognostic marker in oncology. Understanding its expression in metastatic colon cancer may reveal which patients could benefit from developing anti-GDF15 targeted therapies against cancer progression.


Planta Medica ◽  
2019 ◽  
Vol 85 (14/15) ◽  
pp. 1143-1149 ◽  
Author(s):  
Zhanyun Shen ◽  
Bo Zhu ◽  
Jiao Li ◽  
Luping Qin

AbstractRhein, an anthraquinone extracted from rhubarb, is used in traditional Chinese medicine for diuresis, diarrhoea, inflammation, and immune regulation. Atezolizumab, a programmed cell death ligand 1 monoclonal antibody, is mainly used to treat bladder cancer and non-small cell lung cancer unresponsive to chemotherapy. We explored the effects of rhein and atezolizumab in combination on breast cancer. Mice with established 4T1 breast cancer xenografts were administered rhein (10 mg/kg) and atezolizumab (10 mg/kg), alone and in combination, and the effects on tumour growth were evaluated. The proportion of CD8+ T cells in the spleen and tumour tissue, the levels of TNF-α, and interleukin-6 in serum as well as the mRNA levels of apoptotic factors (caspase-3, caspase-8, caspase-9, and Bax/Bcl-2) were also evaluated. All of the treatment groups had inhibitory effects on the xenograft tumour growth, with results that were significantly different from those in the control group. In addition, the proportion of CD8+ T cells in the spleen and tumour was significantly increased in the combination therapy group and was significantly different from the other treatment groups. The serum levels of TNF-α and IL-6 were significantly increased in the rhein and combination therapy groups. Finally, the levels of various apoptotic factors in tumour tissues were significantly higher in the combination treatment group than those in the other groups. Administration of rhein, atezolizumab, or their combination all had therapeutic effects on 4T1 breast cancer xenografts in mice, with the combination treatment having stronger effects.


2021 ◽  
Author(s):  
◽  
Sabine Kuhn

<p><b>The anti-tumour immune response is often not potent enough to prevent or eradicate disease. Dendritic cells (DCs) are professional antigen-presenting cells that are critical for the initiation of immune responses. While DCs frequently infiltrate tumours, lack of activation together with immuno-suppressive factors from the tumour can hamper an effective anti-tumour immune response.</b></p> <p>In this thesis, the ability of microbial stimuli and danger signals to overcome suppression and re-programme DCs and macrophages to an immuno-stimulatory phenotype was investigated. Whole live Mycobacterium smegmatis and BCG were used to provide multiple pathogen-associated molecular patterns. The intracellularly-recognised toll-like-receptor (TLR) ligands CpG and Poly IC, as well as the extracelullarly recognised TLR ligand LPS, and the danger signal monosodium-urate crystals (MSU) were also included.</p> <p>Bone-marrow derived DCs were found to respond to all adjuvants in vitro and DCs in tumour cell suspensions could be activated ex vivo. To assess the ability of adjuvants to enhance anti-tumour responses in vivo, immune-competent mice bearing established subcutaneous B16F1 melanomas were injected peri-tumorally with the different adjuvants. In line with previous reports, CpG treatment was effective in delaying tumour growth and increasing survival. A similar effect was found with Poly IC, but not with LPS, M. smegmatis, BCG or MSU alone. Combination of M. smegmatis + MSU, however, significantly delayed tumour growth and prolonged survival, while combinations of MSU + BCG or LPS were ineffective. Similar results were obtained using the B16.OVA melanoma and E.G7-OVA thymoma subcutaneous tumour models. In addition, Poly IC and MSU + M. smegmatis reduced primary tumour growth as well as lung metastases in the orthotopic 4T1 breast carcinoma model.</p> <p>Both Poly IC and MSU + M. smegmatis elicited an anti-tumour immune response that required CD8 T cells as well as NK cells. These treatments also resulted in increased proliferation of CD8 T cells and NK cells in tumour-draining lymph nodes, augmented infiltration of effector cells into the tumour, as well as enhanced production of in ammatory cytokines by effector cells and DCs in tumours. In addition, MSU + M. smegmatis also stimulated CD4 T cell proliferation, tumour-infiltrationand activation, while at the same time decreasing the frequency of regulatory T cells in tumours.</p> <p>Activation of a successful immune response to tumours was associated with early induction of IL-12 and IFNʸ, as well as moderate levels of pro-inflammatory cytokines at the tumour site and systemically. Furthermore, anti-tumour activity correlated with the induction of inflammatory monocyte-derived DCs in tumour-draining lymph nodes. These DCs were also observed in adjuvant treated tumours and their appearance was preceded by accumulation of inflammatory monocytes at the tumour site.</p> <p>These findings suggest that specific natural adjuvants can successfully modify the tumour environment and enhance the innate and adaptive anti-tumour immune response to delay tumour progression and increase survival.</p>


2019 ◽  
Vol 219 (1) ◽  
Author(s):  
Kim Bich Nguyen ◽  
Stefani Spranger

The development of cancer immunotherapies has been guided by advances in our understanding of the dynamics between tumor cells and immune populations. An emerging consensus is that immune control of tumors is mediated by cytotoxic CD8+ T cells, which directly recognize and kill tumor cells. The critical role of T cells in tumor control has been underscored by preclinical and clinical studies that observed that T cell presence is positively correlated with patient response to checkpoint blockade therapy. However, the vast majority of patients do not respond or develop resistance, frequently associated with exclusion of T cells from the tumor microenvironment. This review focuses on tumor cell–intrinsic alterations that blunt productive anti-tumor immune responses by directly or indirectly excluding effector CD8+ T cells from the tumor microenvironment. A comprehensive understanding of the interplay between tumors and the immune response holds the promise for increasing the response to current immunotherapies via the development of rational novel combination treatments.


2021 ◽  
Author(s):  
◽  
Sabine Kuhn

<p><b>The anti-tumour immune response is often not potent enough to prevent or eradicate disease. Dendritic cells (DCs) are professional antigen-presenting cells that are critical for the initiation of immune responses. While DCs frequently infiltrate tumours, lack of activation together with immuno-suppressive factors from the tumour can hamper an effective anti-tumour immune response.</b></p> <p>In this thesis, the ability of microbial stimuli and danger signals to overcome suppression and re-programme DCs and macrophages to an immuno-stimulatory phenotype was investigated. Whole live Mycobacterium smegmatis and BCG were used to provide multiple pathogen-associated molecular patterns. The intracellularly-recognised toll-like-receptor (TLR) ligands CpG and Poly IC, as well as the extracelullarly recognised TLR ligand LPS, and the danger signal monosodium-urate crystals (MSU) were also included.</p> <p>Bone-marrow derived DCs were found to respond to all adjuvants in vitro and DCs in tumour cell suspensions could be activated ex vivo. To assess the ability of adjuvants to enhance anti-tumour responses in vivo, immune-competent mice bearing established subcutaneous B16F1 melanomas were injected peri-tumorally with the different adjuvants. In line with previous reports, CpG treatment was effective in delaying tumour growth and increasing survival. A similar effect was found with Poly IC, but not with LPS, M. smegmatis, BCG or MSU alone. Combination of M. smegmatis + MSU, however, significantly delayed tumour growth and prolonged survival, while combinations of MSU + BCG or LPS were ineffective. Similar results were obtained using the B16.OVA melanoma and E.G7-OVA thymoma subcutaneous tumour models. In addition, Poly IC and MSU + M. smegmatis reduced primary tumour growth as well as lung metastases in the orthotopic 4T1 breast carcinoma model.</p> <p>Both Poly IC and MSU + M. smegmatis elicited an anti-tumour immune response that required CD8 T cells as well as NK cells. These treatments also resulted in increased proliferation of CD8 T cells and NK cells in tumour-draining lymph nodes, augmented infiltration of effector cells into the tumour, as well as enhanced production of in ammatory cytokines by effector cells and DCs in tumours. In addition, MSU + M. smegmatis also stimulated CD4 T cell proliferation, tumour-infiltrationand activation, while at the same time decreasing the frequency of regulatory T cells in tumours.</p> <p>Activation of a successful immune response to tumours was associated with early induction of IL-12 and IFNʸ, as well as moderate levels of pro-inflammatory cytokines at the tumour site and systemically. Furthermore, anti-tumour activity correlated with the induction of inflammatory monocyte-derived DCs in tumour-draining lymph nodes. These DCs were also observed in adjuvant treated tumours and their appearance was preceded by accumulation of inflammatory monocytes at the tumour site.</p> <p>These findings suggest that specific natural adjuvants can successfully modify the tumour environment and enhance the innate and adaptive anti-tumour immune response to delay tumour progression and increase survival.</p>


Sign in / Sign up

Export Citation Format

Share Document