scholarly journals Modulation of the immune microenvironment by tumor-intrinsic oncogenic signaling

2019 ◽  
Vol 219 (1) ◽  
Author(s):  
Kim Bich Nguyen ◽  
Stefani Spranger

The development of cancer immunotherapies has been guided by advances in our understanding of the dynamics between tumor cells and immune populations. An emerging consensus is that immune control of tumors is mediated by cytotoxic CD8+ T cells, which directly recognize and kill tumor cells. The critical role of T cells in tumor control has been underscored by preclinical and clinical studies that observed that T cell presence is positively correlated with patient response to checkpoint blockade therapy. However, the vast majority of patients do not respond or develop resistance, frequently associated with exclusion of T cells from the tumor microenvironment. This review focuses on tumor cell–intrinsic alterations that blunt productive anti-tumor immune responses by directly or indirectly excluding effector CD8+ T cells from the tumor microenvironment. A comprehensive understanding of the interplay between tumors and the immune response holds the promise for increasing the response to current immunotherapies via the development of rational novel combination treatments.

2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A479-A479
Author(s):  
Matteo Rossi ◽  
Elodie Belnoue ◽  
Susanna Carboni ◽  
Wilma Besson-Di Berardino ◽  
Erika Riva ◽  
...  

BackgroundKISIMATM platform allows the development of protein-based cancer vaccines able to induce a potent, tumor-specific CD8 and CD4 T cells response. While the cell penetrating peptide and the Anaxa portions confer, respectively, the cell delivery and self-adjuvanticity properties, the multiantigenic domain allows the targeting of different cancer antigens, resulting in anti-tumoral efficacy in different murine models.1 The first clinical candidate developed from KISIMATM is currently tested, together with anti-PD-1 blockade, in a phase I study in metastatic colorectal cancer patients. Stimulator of interferon genes agonists (STINGa) were shown to induce a potent type I interferon response in preclinical studies. The intratumoral administration of STINGa, to promote tumor inflammation, was shown to result in a protective spontaneous immune response in several murine tumor models. However, the encouraging preclinical results are not supported by recent clinical data, challenging the efficacy of unspecific monotherapy.As it is more and more clear that an effective cancer immunotherapy will require the combination of different treatment strategies, we investigate here the efficacy of combining KISIMATM cancer vaccine with STINGa treatment.MethodsMice were vaccinated with subcutaneous (s.c.) injection of KISIMATM vaccine combined with s.c. administration of STINGa. Safety and immunogenicity were assessed by measuring temperature, serum cytokines and the peripheral antigen-specific response. Anti-tumoral efficacy as well as in depth monitoring of TILs and tumor microenvironment modulation were assessed following therapeutic vaccination in a HPV16 E6 and E7 expressing TC-1 cold tumor model.ResultsCombination treatment was well tolerated and promoted the development of circulating antigen-specific CD8 T cells. In TC-1 tumor bearing mice, KISIMATM therapeutic vaccination resulted in the infiltration of both antigen-specific CD8 and CD4 T cells within the tumor, as well as a switch of tumor associated macrophages polarization toward the more inflammatory type 1. Combination therapy further increased the tumor microenvironment modulation induced by KISIMATM vaccine, promoting the polarization of inflammatory Thelper 1 CD4 T cells and increasing the effector function of antigen-specific CD8 T cells. The profound modulation of the tumor microenvironment induced by combination therapy enhanced the beneficial effect of KISIMATM vaccination, resulting in a prolonged tumor control.ConclusionsCombination of KISIMATM cancer vaccine with systemic STINGa treatment induces the development of a potent, tumor-specific immune response resulting in a profound modulation of the TME. As check-point inhibitor (CPI) therapy is ineffective on poorly infiltrated tumors, combination with therapies able to highly enhance tumor infiltration by T cells could expand CPI indications.Ethics ApprovalThe study was approved by the Canton of Geneva Ethic Board, under the license number GE165/19ReferenceBelnoue E, et al. Targeting self and neo-epitopes with a modular self-adjuvanting cancer vaccine. JCI Insight 2019. 4:11.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A544-A544
Author(s):  
Kim Nguyen ◽  
Stefani Spranger ◽  
Christopher Copeland

BackgroundMany cancer immunotherapies depend on the ability of cytotoxic CD8+ T cells to recognize neoantigens on MHCI complexes to effectively eliminate tumor cells. However, patient response following immunotherapy is highly variable, with recent work suggesting that neoantigen expression patterns can impair patient response. Specifically, it was observed that the immune response is dampened when neoantigens are expressed only by a subset of tumor cells (heterogeneous expression).1 To study why anti-tumor immunity is reduced in a heterogeneous setting we developed a transplant murine tumor model engineered to express neoantigens in a heterogeneous pattern or homogenously.MethodsA curated list of neoantigens with varying predicted MCHI binding affinities was used to established an array of cell lines expressing at one to three neoantigens. The lines were inoculated subcutaneously in immunocompetent mice as mixtures (heterogenous) or as a single line (homogenous) to study the resulting immune response. Tumors were harvested at days 7, 10 and 14 and flow cytometry analysis was used to phenotype infiltrating immune populations, including antigen-specific CD8+ T cells. ELISpot assays were performed using splenocytes from the same timepoints to determine the frequency of antigen-specific T cells in the periphery.ResultsCompared to neoantigens predicted to bind weakly to MHCI, neoantigens predicted to bind strongly elicited robust expansion of antigen-specific T cells in the periphery and tumors expressing these antigens alone exhibited greater numbers of tumor infiltrating T cells. Homogenous expression of two neoantigens was found to enhance anti-tumor immunity by increasing the frequency of tumor-reactive T cells. Further, homogenous expression of two neoantigens induced protective immunity against antigens, including those that failed to be controlled when expressed alone.ConclusionsUsing our novel reductionist tumor model, our results suggest that a more robust response against weak antigens could be induced if a response against a strong, highly immunogenic neoantigen is mounted simultaneously. This observation has direct implications for the design of neoantigen vaccines either as mono- or combination immunotherapies, especially in the setting of a heterogeneous neoantigen expression pattern.ReferencesMcGranahan N, Furness AJ, Rosenthal R, Ramskov S, Lyngaa R, Saini SK, Jamal-Hanjani M, Wilson GA, Birkbak NJ, Hiley CT, Watkins TB, Shafi S, Murugaesu N, Mitter R, Akarca AU, Linares J, Marafioti T, Henry JY, Van Allen EM, Miao D, Schilling B, Schadendorf D, Garraway LA, Makarov V, Rizvi NA, Snyder A, Hellmann MD, Merghoub T, Wolchok JD, Shukla SA, Wu CJ, Peggs KS, Chan TA, Hadrup SR, Quezada SA, Swanton C. Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade. Science 2016 Mar 25;351(6280):1463–9.


2022 ◽  
Vol 2022 ◽  
pp. 1-8
Author(s):  
Po-Hao Feng ◽  
Xiaoxu Wang ◽  
Louise Ferrall ◽  
T.-C. Wu ◽  
Chien-Fu Hung

Tumor antigen-specific T cell function is limited by immune tolerance in the tumor microenvironment. In the tumor microenvironment, tumor cells upregulate PD-L1 expression to promote T cell exhaustion by PD-1/PD-L1 interactions and undergo mutations to avoid being targeted by tumor antigen-specific T cells. Thus, tumor cells escape the immune surveillance by causing immune tolerance. We reason that a chimeric molecule made of a PD-L1-specific antibody linked to a cleavable antigenic peptide can target the antigenic peptide to the tumor microenvironment, resulting in the blockade of the PD-1/PD-L1 pathway and killing tumor cells through the coating of antigenic peptide. Here, we have generated a therapeutic chimeric protein containing the PD-L1 single-chain variable fragment (scFv) linked to a cleavable model cytotoxic T lymphocyte (CTL) epitope: E7 CTL peptide. Our study demonstrated that our chimeric protein (named PDL1-scFv-Fc-RE7) can target PD-L1-expressing tumor cells and enable E7 presentation by releasing cleavable E7 CTL peptide to coat tumor cells, resulting in tumor clearance by E7-specific CD8+ T cells. The presentation of the E7 peptide by cancer cells can then render tumor cells susceptible to the killing of preexisting E7-specific CD8+ T cells and contribute to tumor clearance. Our finding suggests a synergistic approach to not only enhance antigen-specific tumor clearance but also bypass immune tolerance.


Cancers ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2828
Author(s):  
Wei Liu ◽  
Paweł Stachura ◽  
Haifeng C. Xu ◽  
Sanil Bhatia ◽  
Arndt Borkhardt ◽  
...  

The inability of tumor-infiltrating T lymphocytes to eradicate tumor cells within the tumor microenvironment (TME) is a major obstacle to successful immunotherapeutic treatments. Understanding the immunosuppressive mechanisms within the TME is paramount to overcoming these obstacles. T cell senescence is a critical dysfunctional state present in the TME that differs from T cell exhaustion currently targeted by many immunotherapies. This review focuses on the physiological, molecular, metabolic and cellular processes that drive CD8+ T cell senescence. Evidence showing that senescent T cells hinder immunotherapies is discussed, as are therapeutic options to reverse T cell senescence.


2021 ◽  
Author(s):  
Kanako Yokomizo ◽  
Kayoko Waki ◽  
Miyako Ozawa ◽  
Keiko Yamamoto ◽  
Sachiko Ogasawara ◽  
...  

Abstract High mobility group box 1 (HMGB1) has been reported as a damage-associated molecular pattern (DAMP) molecule that is released from damaged or dead cells and induces inflammation and subsequent innate immunity. However, the role of HMGB1 in the anti-tumor immunity is unclear since inflammation in the tumor microenvironment also contributes to tumor promotion and progression. In the present study, we established HMGB1-knockout clones from B16F10 and CT26 murine tumors by genome editing using the CRISPR/Cas9 system and investigated the role of HMGB1 in anti-tumor immunity. We found that 1) knockout of HMGB1 in the tumor cells suppressed in vivo, but not in vitro, tumor growth, 2) the suppression of the in vivo tumor growth was mediated by CD8 T cells, and 3) infiltration of CD8 T cells, macrophages and dendritic cells into the tumor tissues was accelerated in HMGB1-knockout tumors. These results demonstrated that knockout of HMGB1 in tumor cells converted tumors from poor infiltration of immune cells called “cold” to “immune-inflamed” or “hot” and inhibited in vivo tumor growth mediated by cytotoxic T lymphocytes. Infiltration of immune cells to the tumor microenvironment is an important step in the series known as the cancer immunity cycle. Thus, manipulation of tumor-derived HMGB1 might be applicable to improve the clinical outcomes of cancer immunotherapies, including immune checkpoint blockades and cancer vaccine therapies.


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A935-A935
Author(s):  
Uijung Jung ◽  
Jaehyoung Jeon ◽  
Shinai Lee ◽  
Hyung-Seung Jin ◽  
Youngkwang Kim ◽  
...  

BackgroundPD-(L)1 inhibitor has revolutionized cancer treatment, but there are unmet clinical needs for PD-(L)1 inhibitor-resistant/refractory patients. Activation of T cells in tumor microenvironment by 4-1BB agonist antibodies is one of the promising approaches to complement the current limitation of PD-(L)1 inhibitors. Although 4-1BB is a promising target for immunotherapy, clinical studies using 4-1BB agonist antibodies showed systemic immune cell activation resulting in dose-limiting hepatotoxicity. We generated ABL503 (TJ-L14B), a bispecific antibody that combines PD-(L)1 blockade and PD-L1-dependent 4-1BB agonistic activity by binding both PD-L1 and 4-1BB to limit unwanted toxicities while exerting a potent anti-tumor efficacy. Here, we reported the pre-clinical properties of ABL503 (TJ-L14B) in various studies.MethodsThe activity of ABL503 (TJ-L14B) was characterized and evaluated in 1) PD-1 and 4-1BB signaling reporter cells cocultured with various tumor cells and PBMCs, 2) hPD-L1/h4-1BB knock-in mice implanted with MC38 tumor expressing different level of hPD-L1, 3) patient-derived lung cancer organoids cocultured with autologous PBMCs, and 4) PBMCs from healthy donors to measure cytokine release.ResultsFunctional evaluation of ABL503 (TJ-L14B) indicates the activation of 4-1BB signaling was solely dependent on engagement of hPD-L1 expressed on immune cells as well as on tumor cells, pointing to pivotal roles of PD-L1 on both immune cells and tumor cells for the activity of ABL503 (TJ-L14B). In vivo anti-tumor activity of ABL503 (TJ-L14B) across different hPD-L1 levels showed prominent anti-tumor effect with significantly increased number of CD8+ cells and 4-1BB+ cells in the tumor. This anti-tumor activity was correlated with the proliferation (Ki-67+) of CD8+ T cells in the tumor microenvironment. Ex vivo assays utilizing patient-derived lung cancer organoids revealed that ABL503 (TJ-L14B) exhibits superior tumor-killing activity than that by benchmark PD-L1 antibody, Atezolizumab. In addition, cytokine release assay demonstrated that ABL503 (TJ-L14B) did not induce non-specific pro-inflammatory cytokine release by human PBMCs.ConclusionsOur data indicate that PD-L1 and 4-1BB dual targeting bispecific antibody, ABL503 (TJ-L14B), shows potent 4-1BB agonistic activity and anti-tumor effect in a PD-L1-dependent fashion concomitant with 4-1BB+/CD8+ T cell activation and proliferation to overcome limitations of PD-(L)1-targeted therapy while minimizing the risk of peripheral toxicity. The phase 1 clinical trial in the U.S. is currently ongoing in patients with locally advanced or metastatic solid tumors (NCT04762641).


2021 ◽  
Vol 9 (10) ◽  
pp. e003329
Author(s):  
Ravikumar Muthuswamy ◽  
AJ Robert McGray ◽  
Sebastiano Battaglia ◽  
Wenjun He ◽  
Anthony Miliotto ◽  
...  

PurposeResident memory CD8 T cells, owing to their ability to reside and persist in peripheral tissues, impart adaptive sentinel activity and amplify local immune response, and have beneficial implications for tumor surveillance and control. The current study aimed to clarify the less known chemotactic mechanisms that govern the localization, retention, and residency of memory CD8 T cells in the ovarian tumor microenvironment.Experimental designRNA and protein expressions of chemokine receptors in CD8+ resident memory T cells in human ovarian tumor-infiltrating CD8+ T cells and their association with survival were analyzed. The role of CXCR6 on antitumor T cells was investigated using prophylactic vaccine models in murine ovarian cancer.ResultsChemokine receptor profiling of CD8+CD103+ resident memory tumor-infiltrating lymphocytes in patients with ovarian cancer revealed high expression of CXCR6. Analysis of The Cancer Genome Atlas (TCGA) (ovarian cancer database revealed CXCR6 to be associated with CD103 and increased patient survival. Functional studies in mouse models of ovarian cancer revealed that CXCR6 is a marker of resident, but not circulatory, tumor-specific memory CD8+ T cells. CXCR6-deficient tumor-specific CD8+ T cells showed reduced retention in tumor tissues, leading to diminished resident memory responses and poor control of ovarian cancer.ConclusionsCXCR6, by promoting retention in tumor tissues, serves a critical role in resident memory T cell-mediated immunosurveillance and control of ovarian cancer. Future studies warrant exploiting CXCR6 to promote resident memory responses in cancers.


2021 ◽  
Vol 23 (1) ◽  
pp. 81
Author(s):  
Abdulaziz A. Almotlak ◽  
Mariya Farooqui ◽  
Adam C. Soloff ◽  
Jill M. Siegfried ◽  
Laura P. Stabile

High ERβ/HER oncogenic signaling defines lung tumors with an aggressive biology. We previously showed that combining the anti-estrogen fulvestrant with the pan-HER inhibitor dacomitinib reduced ER/HER crosstalk and produced synergistic anti-tumor effects in immunocompromised lung cancer models, including KRAS mutant adenocarcinoma. How this combination affects the tumor microenvironment (TME) is not known. We evaluated the effects of fulvestrant and dacomitinib on murine bone marrow-derived macrophages (BMDMs) and CD8+ T cells, and tested the efficacy of the combination in vivo, using the KRAS mutant syngeneic lung adenocarcinoma model, FVBW-17. While this combination synergistically inhibited proliferation of FVBW-17 cells, it had unwanted effects on immune cells, by reducing CD8+ T cell activity and phagocytosis in BMDMs and inducing PD-1. The effects were largely attributed to dacomitinib, which caused downregulation of Src family kinases and Syk in immune cells. In a subcutaneous flank model, the combination induced an inflamed TME with increased myeloid cells and CD8+ T cells and enhanced PD-1 expression in the splenic compartment. Concomitant administration of anti-PD-1 antibody with fulvestrant and dacomitinib was more efficacious than fulvestrant plus dacomitinib alone. Administering anti-PD-1 sequentially after fulvestrant plus dacomitinib was synergistic, with a two-fold greater tumor inhibitory effect compared to concomitant therapy, in both the flank model and in a lung metastasis model. Sequential triple therapy has potential for treating lung cancer that shows limited response to current therapies, such as KRAS mutant lung adenocarcinoma.


Sign in / Sign up

Export Citation Format

Share Document