scholarly journals Vaccine-breakthrough infection by the SARS-CoV-2 Omicron variant elicits broadly cross-reactive immune responses

2021 ◽  
Author(s):  
Runhong Zhou ◽  
Kelvin Kai-Wang To ◽  
Qiaoli Peng ◽  
Jacky Man-Chun Chan ◽  
Haode Huang ◽  
...  

Highly transmissible SARS-CoV-2 Omicron variant has posted a new crisis for COVID-19 pandemic control. Within a month, Omicron is dominating over Delta variant in several countries probably due to immune evasion. It remains unclear whether vaccine-induced memory responses can be recalled by Omicron infection. Here, we investigated host immune responses in the first vaccine-breakthrough case of Omicron infection in Hong Kong. We found that the breakthrough infection rapidly recruited potent cross-reactive broad neutralizing antibodies (bNAbs) against current VOCs, including Alpha, Beta, Gamma, Delta and Omicron, from unmeasurable IC50 values to mean 1:2929 at around 9-12 days, which were higher than the mean peak IC50 values of BioNTech-vaccinees. Cross-reactive spike- and nucleocapsid-specific CD4 and CD8 T cell responses were detected. Similar results were also obtained in the second vaccine-breakthrough case of Omicron infection. Our preliminary findings may have timely implications to booster vaccine optimization and preventive strategies of pandemic control.

2011 ◽  
Vol 19 (1) ◽  
pp. 84-95 ◽  
Author(s):  
Jin Huk Choi ◽  
Joe Dekker ◽  
Stephen C. Schafer ◽  
Jobby John ◽  
Craig E. Whitfill ◽  
...  

ABSTRACTThe immune response to recombinant adenoviruses is the most significant impediment to their clinical use for immunization. We test the hypothesis that specific virus-antibody combinations dictate the type of immune response generated against the adenovirus and its transgene cassette under certain physiological conditions while minimizing vector-induced toxicity.In vitroandin vivoassays were used to characterize the transduction efficiency, the T and B cell responses to the encoded transgene, and the toxicity of 1 × 1011adenovirus particles mixed with different concentrations of neutralizing antibodies. Complexes formed at concentrations of 500 to 0.05 times the 50% neutralizing dose (ND50) elicited strong virus- and transgene-specific T cell responses. The 0.05-ND50formulation elicited measurable anti-transgene antibodies that were similar to those of virus alone (P= 0.07). This preparation also elicited very strong transgene-specific memory T cell responses (28.6 ± 5.2% proliferation versus 7.7 ± 1.4% for virus alone). Preexisting immunity significantly reduced all responses elicited by these formulations. Although lower concentrations (0.005 and 0.0005 ND50) of antibody did not improve cellular and humoral responses in naïve animals, they did promote strong cellular (0.005 ND50) and humoral (0.0005 ND50) responses in mice with preexisting immunity. Some virus-antibody complexes may improve the potency of adenovirus-based vaccines in naïve individuals, while others can sway the immune response in those with preexisting immunity. Additional studies with these and other virus-antibody ratios may be useful to predict and model the type of immune responses generated against a transgene in those with different levels of exposure to adenovirus.


Author(s):  
Felix G. Delgado ◽  
Karina I. Torres ◽  
Jaime E. Castellanos ◽  
Consuelo Romero-Sánchez ◽  
Etienne Simon-Lorière ◽  
...  

The high level of dengue virus (DENV) seroprevalence in areas where Zika virus (ZIKV) is circulating and the cross-reactivity between these two viruses have raised concerns on the risk of increased ZIKV disease severity for patients with a history of previous DENV infection. To determine the role of DENV pre-immunity in ZIKV infection, we analysed the T and B cell responses against ZIKV in donors with or without previous DENV infection. Using PBMCs from donors living in an endemic area in Colombia, we have identified, by interferon (IFN)-γ enzyme-linked immunospot (ELISPOT) assay, most of the immunodominant ZIKV T-cell epitopes in the non-structural proteins NS1, NS3 and NS5. Analyses of the T and B-cell responses in the same donors revealed a stronger T-cell response against peptides conserved between DENV and ZIKV, with a higher level of ZIKV-neutralizing antibodies in DENV-immune donors, in comparison with DENV-naïve donors. Strikingly, the potential for antibody mediated enhancement of ZIKV infection was reduced in donors with sequential DENV and ZIKV infection in comparison with donors with DENV infection only. Altogether, these data suggest that individuals with DENV immunity present improved immune responses against ZIKV.


2020 ◽  
Vol 6 (4) ◽  
pp. 50
Author(s):  
Shelley Waters ◽  
Silvia Lee ◽  
Kylie Munyard ◽  
Ashley Irish ◽  
Patricia Price ◽  
...  

Human cytomegalovirus (HCMV) infections are common following renal transplantation and may have long-lasting effects. HCMV can be measured directly by viral DNA or indirectly via host immune responses. HCMV-encoded microRNA (miRNA) may alter the pathobiology of HCMV infections and contribute to the progression of HCMV disease. HCMV-encoded miRNAs can be detected in blood but have not been sought in saliva. We investigated saliva samples from 32 renal transplant recipients (RTR) and 12 seropositive healthy controls for whom immunological data was available. Five HCMV-encoded miRNAs (miR-UL112-5p, miR-US5-2-3p, miR-UL36, miR-US25-2-3p and miR-UL22A) were sought using primer probe assays. HCMV miRNA species were detected in saliva from 15 RTR and 3 healthy controls, with miR-US5-2-3p most commonly detected. The presence of HCMV miRNAs associated with increased T-cell responses to HCMV IE-1 in RTR, suggesting a link with frequent reactivations of HCMV.


2021 ◽  
Author(s):  
Neeltje van Doremalen ◽  
Robert Fischer ◽  
Jonathan Schulz ◽  
Myndi Holbrook ◽  
Brian Smith ◽  
...  

Many different vaccine candidates against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), the etiological agent of COVID-19, are currently approved and under development. Vaccine platforms vary from mRNA vaccines to viral-vectored vaccines, and several candidates have been shown to produce humoral and cellular responses in small animal models, non-human primates and human volunteers. In this study, six non-human primates received a prime-boost intramuscular vaccination with 4 μg of mRNA vaccine candidate CV07050101, which encodes a pre-fusion stabilized spike (S) protein of SARS-CoV-2. Boost vaccination was performed 28 days post prime vaccination. As a control, six animals were similarly injected with PBS. Humoral and cellular immune responses were investigated at time of vaccination, and two weeks afterwards. No antibodies could be detected two and four weeks after prime vaccination. Two weeks after boost vaccination, binding but no neutralizing antibodies were detected in 4 out of 6 non-human primates. SARS-CoV-2 S protein specific T cell responses were detected in these 4 animals. In conclusion, prime-boost vaccination with 4 μg of vaccine candidate CV07050101 resulted in limited immune responses in 4 out of 6 non-human primates.


Vaccines ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 852
Author(s):  
Khalid A. Alluhaybi ◽  
Rahaf H. Alharbi ◽  
Rowa Y. Alhabbab ◽  
Najwa D. Aljehani ◽  
Sawsan S. Alamri ◽  
...  

The urgent need for effective, safe and equitably accessible vaccines to tackle the ongoing spread of COVID-19 led researchers to generate vaccine candidates targeting varieties of immunogens of SARS-CoV-2. Because of its crucial role in mediating binding and entry to host cell and its proven safety profile, the subunit 1 (S1) of the spike protein represents an attractive immunogen for vaccine development. Here, we developed and assessed the immunogenicity of a DNA vaccine encoding the SARS-CoV-2 S1. Following in vitro confirmation and characterization, the humoral and cellular immune responses of our vaccine candidate (pVAX-S1) was evaluated in BALB/c mice using two different doses, 25 µg and 50 µg. Our data showed high levels of SARS-CoV-2 specific IgG and neutralizing antibodies in mice immunized with three doses of pVAX-S1. Analysis of the induced IgG subclasses showed a Th1-polarized immune response, as demonstrated by the significant elevation of spike-specific IgG2a and IgG2b, compared to IgG1. Furthermore, we found that the immunization of mice with three doses of 50 µg of pVAX-S1 could elicit significant memory CD4+ and CD8+ T cell responses. Taken together, our data indicate that pVAX-S1 is immunogenic and safe in mice and is worthy of further preclinical and clinical evaluation.


Author(s):  
Cheryl Keech ◽  
Gary Albert ◽  
Patricia Reed ◽  
Susan Neal ◽  
Joyce S. Plested ◽  
...  

Background NVX-CoV2373 is a recombinant nanoparticle vaccine composed of trimeric full-length SARS-CoV-2 spike glycoproteins. We present the Day 35 primary analysis of our trial of NVX-CoV2373 with or without the saponin-based Matrix-M1 adjuvant in healthy adults. Methods This is a randomized, observer-blinded, placebo-controlled, phase 1 trial in 131 healthy adults. Trial vaccination comprised two intramuscular injections, 21 days apart. Primary outcomes were reactogenicity, safety labs, and immunoglobulin G (IgG) anti-spike protein response. Secondary outcomes included adverse events, wild-type virus neutralizing antibody, and T-cell responses. Results Participants received NVX-CoV2373 with or without Matrix-M1 (n=106) or placebo (n=25). There were no serious adverse events. Reactogenicity was mainly mild in severity and of short duration (mean ≥ 2 days), with second vaccinations inducing greater local and systemic reactogenicity. The adjuvant significantly enhanced immune responses and was antigen dose-sparing, and the two-dose 5μg NVX-CoV2373/Matrix-M1 vaccine induced mean anti-spike IgG and neutralizing antibody responses that exceeded the mean responses in convalescent sera from COVID-19 patients with clinically significant illnesses. The vaccine also induced antigen-specific T cells with a largely T helper 1 (Th1) phenotype. Conclusions NVX-CoV2373/Matrix-M1 was well tolerated and elicited robust immune responses (IgG and neutralization) four-fold higher than the mean observed in COVID-19 convalescent serum from participants with clinical symptoms requiring medical care and induced CD4+ T-cell responses biased toward a Th1 phenotype. These findings suggest that the vaccine may confer protection and support transition to efficacy evaluations to test this hypothesis. (Funded by the Coalition for Epidemic Preparedness Innovations; ClinicalTrials.gov number, NCT04368988).


2020 ◽  
Vol 88 (8) ◽  
Author(s):  
Xisheng Wang ◽  
Daniel D. Rockey ◽  
Brian P. Dolan

ABSTRACT Chlamydia bacteria are obligate intracellular pathogens which can cause a variety of disease in humans and other vertebrate animals. To successfully complete its life cycle, Chlamydia must evade both intracellular innate immune responses and adaptive cytotoxic T cell responses. Here, we report on the role of the chlamydial lipooligosaccharide (LOS) in evading the immune response. Chlamydia infection is known to block the induction of apoptosis. However, when LOS synthesis was inhibited during Chlamydia trachomatis infection, HeLa cells regained susceptibility to apoptosis induction following staurosporine treatment. Additionally, the delivery of purified LOS to the cytosol of cells increased the levels of the antiapoptotic protein survivin. An increase in survivin levels was also detected following C. trachomatis infection, which was reversed by blocking LOS synthesis. Interestingly, while intracellular delivery of lipopolysaccharide (LPS) derived from Escherichia coli was toxic to cells, LOS from C. trachomatis did not induce any appreciable cell death, suggesting that it does not activate pyroptosis. Chlamydial LOS was also a poor stimulator of maturation of bone marrow-derived dendritic cells compared to E. coli LPS. Previous work from our group indicated that LOS synthesis during infection was necessary to alter host cell antigen presentation. However, direct delivery of LOS to cells in the absence of infection did not alter antigenic peptide presentation. Taken together, these data suggest that chlamydial LOS, which is remarkably conserved across the genus Chlamydia, may act both directly and indirectly to allow the pathogen to evade the innate and adaptive immune responses of the host.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Muni Rubens ◽  
Venkataraghavan Ramamoorthy ◽  
Anshul Saxena ◽  
Nancy Shehadeh ◽  
Sandeep Appunni

HIV/AIDS is a leading cause of mortality and morbidity worldwide. In spite of successful interventions and treatment protocols, an HIV vaccine would be the ultimate prevention and control strategy. Ever since identification of HIV/AIDS, there have been meticulous efforts for vaccine development. The specific aim of this paper is to review recent vaccine efficacy trials and associated advancements and discuss the current challenges and future directions. Recombinant DNA technologies greatly facilitated development of many viral products which were later incorporated into vectors for effective vaccines. Over the years, a number of scientific approaches have gained popularity and include the induction of neutralizing antibodies in late 1980s, induction of CD8 T cell in early 1990s, and combination approaches currently. Scientists have hypothesized that stimulation of right sequences of somatic hypermutations could induce broadly reactive neutralizing antibodies (bnAbs) capable of effective neutralization and viral elimination. Studies have shown that a number of host and viral factors affect these processes. Similarly, eliciting specific CD8 T cells immune responses through DNA vaccines hold future promises. In summary, future studies should focus on the continuous fight between host immune responses and ever-evasive viral factors for effective vaccines.


2008 ◽  
Vol 83 (6) ◽  
pp. 2623-2631 ◽  
Author(s):  
Roberto Calcedo ◽  
Luk H. Vandenberghe ◽  
Soumitra Roy ◽  
Suryanarayan Somanathan ◽  
Lili Wang ◽  
...  

ABSTRACT Recent studies indicate that great apes and macaques chronically shed adenoviruses in the stool. Shedding of adenovirus in the stool of humans is less prevalent, although virus genomes persist in gut-associated lymphoid tissue in the majority of individual samples. Chimpanzees have high levels of broadly reactive neutralizing antibodies to adenoviruses in serum, with very low frequencies of adenovirus-specific T cells in peripheral blood. A similar situation exists in macaques; sampling of guts from macaques demonstrated adenovirus-specific T cells in lamina propria. Humans show intermediate levels of serum neutralizing antibodies, with adenovirus-specific T cells in peripheral blood of all individuals sampled and about 20% of samples from the gut, suggesting a potential role of T cells in better controlling virus replication in the gut. The overall structure of the E3 locus, which is involved in modulating the host's response to infection, is degenerate in humans compared to that in apes, which may contribute to diminished evasion of host immunity. The impact of adenovirus persistence and immune responses should be considered when using adenoviral vectors in gene therapy and genetic vaccines.


Sign in / Sign up

Export Citation Format

Share Document