scholarly journals Common neural functions during children's naturalistic and controlled laboratory mathematics learning

2022 ◽  
Author(s):  
Marie Amalric ◽  
Jessica Cantlon

A major goal of human neuroscience is to understand how the brain functions in the real world, and to measure neural processes under conditions that are ecologically valid. A critical step toward this goal is understanding how brain activity during naturalistic tasks that mimic the real world, relates to brain activity in more traditional laboratory tasks. In the present study, we used intersubject correlations to locate reliable stimulus-driven cerebral processes among children and adults in a naturalistic video lesson and a laboratory forced-choice task that shared the same arithmetic concept. We show that relative to a control condition with grammatical content, naturalistic and laboratory arithmetic tasks evoked overlapping activation within brain regions previously associated with math semantics. The regions of specific functional overlap between the naturalistic mathematics lesson and laboratory mathematics task included bilateral intraparietal cortex, which confirms that this region processes mathematical content independently of differences in task mode. These findings suggest that regions of the intraparietal cortex process mathematical content when children are learning about mathematics in the real world.

2020 ◽  
Author(s):  
Marie Amalric ◽  
Jessica F. Cantlon

AbstractA major goal of human neuroscience is to understand how the brain functions in the real world, and to measure neural processes under naturalistic conditions that are more ecologically valid than traditional laboratory tasks. A critical step toward this goal is understanding how neural activity during real world naturalistic tasks relates to neural activity in more traditional laboratory tasks. In the present study, we used intersubject correlations to locate reliable stimulus-driven neural processes among children and adults in naturalistic and laboratory versions of a mathematics task that shared the same content. We show that relative to a control condition with grammatical content, naturalistic and simplified mathematics tasks evoked overlapping activation within brain regions previously associated with math semantics. We further examined the temporal properties of children’s neural responses during the naturalistic and laboratory tasks to determine whether temporal patterns of neural activity change over development, or dissociate based on semantic or task content. We introduce a rather novel measure, not yet used in fMRI studies of child learning: neural multiscale entropy. In addition to showing new evidence of naturalistic mathematics processing in the developing brain, we show that neural maturity and neural entropy are two independent but complementary markers of functional brain development. We discuss the implications of these results for the development of neural complexity in children.


2013 ◽  
Vol 25 (12) ◽  
pp. 2072-2085 ◽  
Author(s):  
Gilles Vandewalle ◽  
Olivier Collignon ◽  
Joseph T. Hull ◽  
Véronique Daneault ◽  
Geneviève Albouy ◽  
...  

Light regulates multiple non-image-forming (or nonvisual) circadian, neuroendocrine, and neurobehavioral functions, via outputs from intrinsically photosensitive retinal ganglion cells (ipRGCs). Exposure to light directly enhances alertness and performance, so light is an important regulator of wakefulness and cognition. The roles of rods, cones, and ipRGCs in the impact of light on cognitive brain functions remain unclear, however. A small percentage of blind individuals retain non-image-forming photoreception and offer a unique opportunity to investigate light impacts in the absence of conscious vision, presumably through ipRGCs. Here, we show that three such patients were able to choose nonrandomly about the presence of light despite their complete lack of sight. Furthermore, 2 sec of blue light modified EEG activity when administered simultaneously to auditory stimulations. fMRI further showed that, during an auditory working memory task, less than a minute of blue light triggered the recruitment of supplemental prefrontal and thalamic brain regions involved in alertness and cognition regulation as well as key areas of the default mode network. These results, which have to be considered as a proof of concept, show that non-image-forming photoreception triggers some awareness for light and can have a more rapid impact on human cognition than previously understood, if brain processing is actively engaged. Furthermore, light stimulates higher cognitive brain activity, independently of vision, and engages supplemental brain areas to perform an ongoing cognitive process. To our knowledge, our results constitute the first indication that ipRGC signaling may rapidly affect fundamental cerebral organization, so that it could potentially participate to the regulation of numerous aspects of human brain function.


Pythagoras ◽  
2018 ◽  
Vol 39 (1) ◽  
Author(s):  
Kathryn Mellor ◽  
Robyn Clark ◽  
Anthony A. Essien

Textbook content has the ability to influence mathematical learning. This study compares how linear functions are presented in two textbooks, one of South African and the other of German origin. These two textbooks are used in different language-based streams in a school in Gauteng, South Africa. A qualitative content analysis on how the topic of linear functions is presented in these two textbooks was done. The interplay between procedural and conceptual knowledge, the integration of the multiple representations of functions, and the links created to other mathematical content areas and the real world were considered. It was found that the German textbook included a higher percentage of content that promoted the development of conceptual knowledge. This was especially due to the level of cognitive demand of tasks included in the analysed textbook chapters. Also, while the South African textbook presented a wider range of opportunities to interact with the different representations of functions, the German textbook, on the other hand, included more links to the real world. Both textbooks linked ‘functions’ to other mathematical content areas, although the German textbook included a wider range of linked topics. It was concluded that learners from the two streams are thus exposed to different affordances to learn mathematics by their textbooks.


2018 ◽  
Vol 52 (1/2) ◽  
pp. 118-146 ◽  
Author(s):  
Marco Hubert ◽  
Mirja Hubert ◽  
Marc Linzmajer ◽  
René Riedl ◽  
Peter Kenning

Purpose The purpose of this study is to examine how consumer personality trait impulsiveness influences trustworthiness evaluations of online-offers with different trust-assuring and trust-reducing elements by measuring the brain activity of consumers. Shoppers with high degrees of impulsiveness are referred to as hedonic shoppers, and those with low degrees are referred to as prudent consumers. Design/methodology/approach To investigate the differences between neural processes in the brains of hedonic and prudent shoppers during the trustworthiness evaluation of online-offers, the present study used functional magnetic resonance imaging (fMRI) and region-of-interest analysis to correlate neural activity patterns with behavioral measures of the study participants. Findings Drawing upon literature reviews on the neural correlates of both trust in online settings and consumer impulsiveness and using an experimental design that links behavioral and fMRI data, the study shows that consumer impulsiveness can exert a significant influence on the evaluation of online-offers. With regard to brain activation, both groups (hedonic and prudent shoppers) exhibit similar neural activation tendencies, but differences exist in the magnitude of activation patterns in brain regions that are closely related to trust and impulsiveness such as the dorsal striatum, anterior cingulate, the dorsolateral prefrontal cortex and the insula cortex. Research limitations/implications The data provide evidence that consumers within the hedonic group evaluate online-offers differently with regard to their trustworthiness compared to the prudent group, and that these differences in evaluation are rooted in neural activation differences in the shoppers’ brains. Practical implications Marketers need to be made aware of the fact that neurological insights can be used for market segmentation, because consumers’ decision-making processes help explain behavioral outcomes (here, trustworthiness evaluations of online-offers). In addition, consumers can learn from an advanced understanding of their brain functions during decision-making and their relation to personal traits such as impulsiveness. Originality/value Considering the importance of trust in online shopping, as well as the fact that personality traits such as impulsiveness influence the purchase process to a high degree, this study is the first to systematically investigate the interplay of online trustworthiness perceptions and differences in consumer impulsiveness with neuroscientific methods.


2002 ◽  
Vol 14 (8) ◽  
pp. 1200-1214 ◽  
Author(s):  
Michael B. Miller ◽  
John Darrell Van Horn ◽  
George L. Wolford ◽  
Todd C. Handy ◽  
Monica Valsangkar-Smyth ◽  
...  

The localization of brain functions using neuroimaging techniques is commonly dependent on statistical analyses of groups of subjects in order to identify sites of activation, particularly in studies of episodic memory. Exclusive reliance on group analysis may be to the detriment of understanding the true underlying cognitive nature of brain activations. In the present study, we found that the patterns of brain activity associated with episodic retrieval are very distinct for individual subjects from the patterns of brain activity at the group level. These differences go beyond the relatively small variations due to cyctoarchitectonic differences or spatial normalization. We quantify this individual variability by cross-correlating volumes of brain images. We demonstrate that individual patterns of brain activity are reliable over time despite their extensive variability. We suggest that varied but reliable individual patterns of significant brain activity may be indicative of different cognitive strategies used to produce a recognition response. We believe that individual analysis in conjunction with group analysis may be critical to fully understanding the relationship between retrieval processes and underlying brain regions.


2021 ◽  
Vol 12 ◽  
Author(s):  
Daniel Lachner-Piza ◽  
Lukas Kunz ◽  
Armin Brandt ◽  
Matthias Dümpelmann ◽  
Aljoscha Thomschewski ◽  
...  

Human High-Frequency-Oscillations (HFO) in the ripple band are oscillatory brain activity in the frequency range between 80 and 250 Hz. HFOs may comprise different subgroups that either play a role in physiologic or pathologic brain functions. An exact differentiation between physiologic and pathologic HFOs would help elucidate their relevance for cognitive and epileptogenic brain mechanisms, but the criteria for differentiating between physiologic and pathologic HFOs remain controversial. In particular, the separation of pathologic HFOs from physiologic HFOs could improve the identification of epileptogenic brain regions during the pre-surgical evaluation of epilepsy patients. In this study, we performed intracranial electroencephalography recordings from the hippocampus of epilepsy patients before, during, and after the patients completed a spatial navigation task. We isolated hippocampal ripples from the recordings and categorized the ripples into the putative pathologic group iesRipples, when they coincided with interictal spikes, and the putative physiologic group isolRipples, when they did not coincide with interictal spikes. We found that the occurrence of isolRipples significantly decreased during the task as compared to periods before and after the task. The rate of iesRipples was not modulated by the task. In patients who completed the spatial navigation task on two consecutive days, we furthermore examined the occurrence of ripples in the intervening night. We found that the rate of ripples that coincided with sleep spindles and were therefore putatively physiologic correlated with the performance improvement on the spatial navigation task, whereas the rate of all ripples did not show this relationship. Together, our results suggest that the differentiation of HFOs into putative physiologic and pathologic subgroups may help identify their role for spatial memory and memory consolidation processes. Conversely, excluding putative physiologic HFOs from putative pathologic HFOs may improve the HFO-based identification of epileptogenic brain regions in future studies.


2021 ◽  
Vol 9 (2) ◽  
pp. 59
Author(s):  
Barep Yohanes ◽  
Feby Indriana Yusuf

<p class="JRPMAbstrakTitle">The study aims at determining the emergence of intrinsic cognitive load in online learning models of School Mathematics 1 in Covid-19 pandemic period. This research is a descriptive qualitative one the data of which are obtained from observation sheets, questionnaires and interview results. Validity checking uses the triangulation method. The results of the study show that the intrinsic cognitive load is caused by the interactivity and isolated/interacting elements contained in the learning process. Elements of interactivity are in the form of terms or concepts in Mathematics learning. These terms or concepts, for examples, are the meaning of Knowledge, Standard Measurement, Mathematical Approach, Intertwined Principles, Content, Context, Competence, PISA Learning Concepts, De-conceptualization, Systems Approach, Conceptual Approach, etc. Isolated/interacting elements are seen from looking for examples of implementation in the real world and actualization of events in Indonesia. An example of implementation in the real world is an element that interacts in real situations in the learning practice of Mathematics.</p>


2018 ◽  
Vol 1 (1) ◽  
pp. 42
Author(s):  
Media Rosha

Educational city Bukittinggi has some Senior High School (SMA) and they are potential.  Learning process is doing well but not optimal yet. Mathematics teacher find the difficulties in build, solve and interprete mathematical models based and real world problem. In other case, it is one of the mathematics learning objectives for SMA. This case gives the negative impact. If teacher knows the models of a problem, she/he will use in explaining the lessson, so that the students find the benefit  of that mathematical concept. One way to solve this problem is give a workshop to teacher to construct mathematical model based on the real world context. In workshop teacher are teached how to model it, oriented to mathematical modelling. The objective of this workshop to help SMA mathematical teacher to model the real world problem, so that the problem solved. Workshop do with several analysis, they are analysis of need, orientation and discussion. Result that teacher reach are they are motivated to study how to model mathematical problem and they understand how to model it.


2021 ◽  
Author(s):  
Shivam Kalhan ◽  
Li Peng Evelyn Chen ◽  
Marta Garrido ◽  
Robert Hester

Reduced inhibitory control and a hypersensitivity to reward are key deficits in drug-dependents, however, they tend to be studied in isolation. Here we seek to understand the neural processes underlying control over reward and how this is different in people with a nicotine use disorder (pNUD). A novel variant of the monetary incentive delay task was performed by pNUD (n = 20) and non-smokers (n = 20), where we added a stop-signal component such that participants had to inhibit prepotent responses to earn a larger monetary reward. Brain activity was recorded using functional magnetic resonance imaging (fMRI). We estimated stop signal reaction times (SSRT), an indicator of impulsivity, and correlated these with brain activity. Inhibitory accuracy scores did not differ between the control group and pNUD. However, pNUD had slower SSRTs, suggesting that they may find it harder to inhibit responses. Brain data revealed that pNUD had greater preparatory control activity in the middle frontal gyrus and inferior frontal gyrus prior to successful inhibitions over reward. In contrast, non-smokers had greater reactive control associated with more activity in the anterior cingulate cortex during these successful inhibitions. SSRT-brain activity correlations revealed that pNUD engaged more control related prefrontal brain regions when SSRTs are slower. Overall, whilst the inhibition accuracy scores were similar between groups, differential neural processes and strategies were used to successfully inhibit a prepotent response. The findings suggest that increasing preparatory control in pNUD may be one possible treatment target in order to increase inhibitory control over reward.


Sign in / Sign up

Export Citation Format

Share Document