scholarly journals Reliability and correlation of fMRI, ECoG and EEG during natural stimulus processing

2017 ◽  
Author(s):  
Stefan Haufe ◽  
Paul DeGuzman ◽  
Simon Henin ◽  
Michael Arcaro ◽  
Christopher J. Honey ◽  
...  

Human brain mapping relies heavily on fMRI, ECoG and EEG, which capture different physiological signals. Relationships between these signals have been established in the context of specific tasks or during resting state, often using spatially confined concurrent recordings in animals. But it is not certain whether these correlations generalize to other contexts relevant for human cognitive neuroscience. Here, we address the case of complex naturalistic stimuli and ask two basic questions. First, how reliable are the responses evoked by a naturalistic audio-visual stimulus in each of these imaging methods, and second, how similar are stimulus-related responses across methods? To this end, we investigated a wide range of brain regions and frequency bands. We presented the same movie clip twice to three different cohorts of subjects (NEEG = 45, NfMRI = 11, NECoG = 5) and assessed stimulus-driven correlations across viewings and between imaging methods, thereby ruling out task-irrelevant confounds. All three imaging methods had similar repeat-reliability across viewings when fMRI and EEG data were averaged across subjects, highlighting the potential to achieve large signal-to-noise ratio by leveraging large sample sizes. The fMRI signal correlated positively with high-frequency ECoG power across multiple task-related cortical structures but positively with low-frequency EEG and ECoG power. In contrast to previous studies, these correlations were as strong for low-frequency as for high frequency ECoG. We also observed links between fMRI and infra-slow EEG voltage fluctuations. These results extend previous findings to the case of natural stimulus processing.

Author(s):  
Walter Anderson ◽  
Constantine Ciocanel ◽  
Mohammad Elahinia

Engine vibration has caused a great deal of research for isolation to be performed. Traditionally, isolation was achieved through the use of pure elastomeric (rubber) mounts. However, with advances in vehicle technology, these types of mounts have become inadequate. The inadequacy stems from the vibration profile associated with the engine, i.e. high displacement at low frequency and small displacement at high frequency. Ideal isolation would be achieved through a stiff mount for low frequency and a soft mount for high frequency. This is contradictory to the performance of the elastomeric mounts. Hydraulic mounts were then developed to address this problem. A hydraulic mount has variable stiffness and damping due to the use of a decoupler and an inertia track. However, further advances in vehicle technology have rendered these mounts inadequate as well. Examples of these advances are hybridization (electric and hydraulic) and cylinder on demand (VCM, MDS & ACC). With these technologies, the vibration excitation has a significantly different profile, occurs over a wide range of frequencies, and calls for a new technology that can address this need. Magnetorheological (MR) fluid is a smart material that is able to change viscosity in the presence of a magnetic field. With the use of MR fluid, variable damping and stiffness can be achieved. An MR mount has been developed and tested. The performance of the mount depends on the geometry of the rubber part as well as the behavior of the MR fluid. The rubber top of the mount is the topic of this study due to its major impact on the isolation characteristics of the MR mount. To develop a design methodology to address the isolation needs of different hybrid vehicles, a geometric parametric finite element analysis has been completed and presented in this paper.


Geophysics ◽  
2021 ◽  
pp. 1-54
Author(s):  
Milad Bader ◽  
Robert G. Clapp ◽  
Biondo Biondi

Low-frequency data below 5 Hz are essential to the convergence of full-waveform inversion towards a useful solution. They help build the velocity model low wavenumbers and reduce the risk of cycle-skipping. In marine environments, low-frequency data are characterized by a low signal-to-noise ratio and can lead to erroneous models when inverted, especially if the noise contains coherent components. Often field data are high-pass filtered before any processing step, sacrificing weak but essential signal for full-waveform inversion. We propose to denoise the low-frequency data using prediction-error filters that we estimate from a high-frequency component with a high signal-to-noise ratio. The constructed filter captures the multi-dimensional spectrum of the high-frequency signal. We expand the filter's axes in the time-space domain to compress its spectrum towards the low frequencies and wavenumbers. The expanded filter becomes a predictor of the target low-frequency signal, and we incorporate it in a minimization scheme to attenuate noise. To account for data non-stationarity while retaining the simplicity of stationary filters, we divide the data into non-overlapping patches and linearly interpolate stationary filters at each data sample. We apply our method to synthetic stationary and non-stationary data, and we show it improves the full-waveform inversion results initialized at 2.5 Hz using the Marmousi model. We also demonstrate that the denoising attenuates non-stationary shear energy recorded by the vertical component of ocean-bottom nodes.


1999 ◽  
Vol 09 (12) ◽  
pp. 2295-2303 ◽  
Author(s):  
S. RIPOLL MASSANÉS ◽  
C. J. PÉREZ VICENTE

We have studied the stochastic behavior of Fitzhugh–Nagumo neuron-like model (FN) induced by subthreshold external stimuli. Our analysis based on three standard measures: the power spectrum, interspike interval distribution (ISI) and autocorrelation function shows that it is possible to define a characteristic time scale which can be identified in the response of the system for a wide range of frequencies. In contrast to previous studies we have focused our attention on high frequency signals which could be of interest for real systems such as nervous fibers in the auditory system. We report behaviors which resemble those of classical deterministic oscillators but never the stochastic resonance phenomenon typical of low frequency signals.


1996 ◽  
Vol 82 (3_suppl) ◽  
pp. 1371-1376 ◽  
Author(s):  
Kimihiko Yamagishi

Frequency estimation of social facts was compared between two methods of response elicitation. In the “narrow range” method, respondents answered questions like: “Out of 100 instances, how many instances belong to category X?”. In the “wide range” method, the same question was asked regarding “Out of 10,000.” A previous study in 1994 showed that judged frequencies were proportionally greater in the narrow condition than in the wide condition when subjects estimated the occurrence of low-frequency events. These results were interpreted to reflect cognitive processes of anchoring, wherein judged frequencies he close to small numbers within particular response ranges. The current work extends this argument to high-frequency events. In such cases, judgments about high-frequency events would be reached by similar cognitive processes operating toward the opposite direction. Hence, I predicted that judged frequencies for high-frequency events would be proportionally greater in the wide than in the narrow condition. Results were mostly consistent with these predictions. The relation to previous research is discussed.


Perception ◽  
1997 ◽  
Vol 26 (8) ◽  
pp. 1047-1058 ◽  
Author(s):  
Howard C Hughes ◽  
David M Aronchick ◽  
Michael D Nelson

It has previously been observed that low spatial frequencies (≤ 1.0 cycles deg−1) tend to dominate high spatial frequencies (≥ 5.0 cycles deg−1) in several types of visual-information-processing tasks. This earlier work employed reaction times as the primary performance measure and the present experiments address the possibility of low-frequency dominance by evaluating visually guided performance of a completely different response system: the control of slow-pursuit eye movements. Slow-pursuit gains (eye velocity/stimulus velocity) were obtained while observers attempted to track the motion of a sine-wave grating. The drifting gratings were presented on three types of background: a uniform background, a background consisting of a stationary grating, or a flickering background. Low-frequency dominance was evident over a wide range of velocities, in that a stationary high-frequency component produced little disruption in the pursuit of a drifting low spatial frequency, but a stationary low frequency interfered substantially with the tracking of a moving high spatial frequency. Pursuit was unaffected by temporal modulation of the background, suggesting that these effects are due to the spatial characteristics of the stationary grating. Similar asymmetries were observed with respect to the stability of fixation: active fixation was less stable in the presence of a drifting low frequency than in the presence of a drifting high frequency.


2012 ◽  
Vol 47 (4) ◽  
pp. 484-503 ◽  
Author(s):  
Norbert Schmitt ◽  
Diane Schmitt

The high-frequency vocabulary of English has traditionally been thought to consist of the 2,000 most frequent word families, and low-frequency vocabulary as that beyond the 10,000 frequency level. This paper argues that these boundaries should be reassessed on pedagogic grounds. Based on a number of perspectives (including frequency and acquisition studies, the amount of vocabulary necessary for English usage, the range of graded readers, and dictionary defining vocabulary), we argue that high-frequency English vocabulary should include the most frequent 3,000 word families. We also propose that the low-frequency vocabulary boundary should be lowered to the 9,000 level, on the basis that 8–9,000 word families are sufficient to provide the lexical resources necessary to be able to read a wide range of authentic texts (Nation 2006). We label the vocabulary between high-frequency (3,000) and low-frequency (9,000+) as mid-frequency vocabulary. We illustrate the necessity of mid-frequency vocabulary for proficient language use, and make some initial suggestions for research addressing the pedagogical challenge raised by mid-frequency vocabulary.


2019 ◽  
Vol 30 (1) ◽  
pp. 51-61
Author(s):  
Ibraheem AlQadi Ibraheem AlQadi

A numerical investigation of flow around a slender body at high angles of attack is presented. Large eddy simulation of the flow around an ogive-cylinder body at high angles of attack is carried out. Asymmetric vortex flow was observed at angles of attack of α = 55◦ and 65◦ . The results showed that the phenomenon is present in the absence of artificial geometrical or flow perturbation. Contrary to the accepted notion that flow asymmetry is due to a convective instability, the development of vortex asymmetry in the absence of perturbations indicates the existence of absolute instability. An investigation of the unsteady flow field was carried out using dynamic mode decomposition. The analysis identified two distinct unsteady modes; high-frequency mode and low-frequency mode. At angle of attack 45◦ the high-frequency mode is dominant in the frontal part of the body and the low-frequency mode is dominant at the rear part. At α = 55◦ , the highfrequency mode is dominant downstream of vortex breakdown. At α = 65◦ , the spectrum shows a wide range of modes. Reconstruction of the dynamical modes shows that the low-frequency mode is associated with the unsteady wake and the high-frequency mode is associated with unsteady shear layer.


2015 ◽  
Author(s):  
◽  
Nuh Sadi Yuksek

We have designed and built macro-scale wideband electrostatic and electromagnetic power harvesters for low frequency vibration. Initially, MEMS capacitive plates for power harvesting have been designed, modeled and fabricated, and characterized. It was designed with a 2 x 2 mm2 movable metallic plate with a thickness of 10 [mu]m suspended by four straight beams above a fixed electrode with a gap of 10 [mu]m to form a variable capacitor. The suspension beams are made with a width, thickness and total length of 20 [mu]m, 10 [mu]m and 1500 [mu]m, respectively. It was found that the single cavity device can harvest almost 180 nW peak power across a 100 k[omega] load resistor at 5g. The harvested power was dependent on excitation amplitude and supplied DC voltage. The MEMS capacitive energy harvester was integrated with two impact oscillators at 18 Hz and 25 Hz for transferring energy from low frequency structural vibration with varying mechanical spectra to high frequency vibration of a high resonance frequency cantilever at 605 Hz. The results demonstrate that the device was able to harvest power on a wide range from 14 to 39 Hz at 1g excitation. The harvested power was 96 nW on a 100 k[omega] load resistor. We also studied a macro-scale electromagnetic power harvester with multi-impact oscillations to achieve a broad bandwidth at low frequency vibrations. The device consists of three low frequency cantilever designed to resonate at 12 Hz, 19 Hz and 40 Hz, a high frequency cantilever with resonance frequency of 210 Hz and a pick-up coil fixed at the tip of the high frequency cantilever. This results in a wide bandwidth response from 11-62 Hz at 1 g. A maximum output power of 23.5 [mu]W can be harvested at 1 g acceleration on an optimum load resistor of 22 [omega].


2021 ◽  
Vol 13 (0) ◽  
pp. 1-5
Author(s):  
Tomaš Tankeliun

The approach to reduce the amplitude noise of a vertical channel of the sampling oscilloscope is presented in this paper. In general, the vertical channel of the sampling oscilloscope consists of a high-frequency sampling circuit and a relatively low-frequency sample transmission path along with a high bit resolution analogto-digital converter. The paper presents a method to improve the sensitivity of the vertical channel of a stroboscopic oscilloscope by extending the conventional channel architecture. The main vertical channel unit of the oscilloscope is a sampling device (sampler), which made of discrete elements and usually implemented using high frequency diodes. The sampler performs a transformation of the sample of the high-frequency signal under test into a low-frequency equivalent signal (otherwise called a balance impulse). In a conventional sampling device, this pulse is quantized once the amplitude is at its highest, thus achieving the best signal-to-noise ratio. The paper analyzes the operating parameters of the sampling device circuit and their influence on the output signal of the sampler. In this approach uses the fastest (15 MHz) high-resolution (18-bit) analog-to-digital converters currently on the market to reduce the amplitude noise of vertical channel based on conventional architecture. Our research has shown that it is possible to obtain an increase in the signal-tonoise ratio of almost 1.3 times.


Author(s):  
Peter Fischer ◽  
Helmut J. Pradlwarter ◽  
Gerhart I. Schuëller

Abstract The frequency domain of many problems in structural dynamics encompasses a wide range, covering nearly static behavior up to vibration flow characteristics similar to heat transfer. This work presents an uniform approach for low and high frequency vibration analysis, which is based on Finite Element modeling of the structure. Vibrations in the low frequency range are determined by an efficient superposition technique of complex modes, which accounts accurately for any linear damping effect. The modal method is extended to the high frequency domain by applying different levels of averaging to the response and eigenfrequencies and by the introduction of random properties of modeshapes. The high frequency domain is defined by the size of the Finite Elements, i.e. short wave lengths of high frequency modeshapes cannot be represented by the FE-model. The response computation of isolated structures is extended to substructures of complex systems by prescribing stochastic multi-support base excitation at the substructure boundaries. It may be noted, that the presented approach of stochastic high frequency dynamics contains, as special cases, the expressions of the structural response of Statistical Energy Analysis, Bolotin’s integral method and the results of Asymptotic Modal Analysis.


Sign in / Sign up

Export Citation Format

Share Document