scholarly journals Phylogenomics places orphan protistan lineages in a novel eukaryotic super-group

2017 ◽  
Author(s):  
Matthew W. Brown ◽  
Aaron Heiss ◽  
Ryoma Kamikawa ◽  
Yuji Inagaki ◽  
Akinori Yabuki ◽  
...  

AbstractRecent phylogenetic analyses position certain ‘orphan’ protist lineages deep in the tree of eukaryotic life, but their exact placements are poorly resolved. We conducted phylogenomic analyses that incorporate deeply sequenced transcriptomes from representatives of collodictyonids (diphylleids), rigifilids, Mantamonas and ancyromonads (planomonads). Analyses of 351 genes, using site-heterogeneous mixture models, strongly support a novel supergroup-level clade that includes collodictyonids, rigifilids and Mantamonas, which we name ‘CRuMs’. Further, they robustly place CRuMs as the closest branch to Amorphea (including animals and fungi). Ancyromonads are strongly inferred to be more distantly related to Amorphea than are CRuMs. They emerge either as sister to malawimonads, or as a separate deeper branch. CRuMs and ancyromonads represent two distinct major groups that branch deeply on the lineage that includes animals, near the most commonly inferred root of the eukaryote tree. This makes both groups crucial in examinations of the deepest-level history of extant eukaryotes.

Horticulturae ◽  
2021 ◽  
Vol 7 (9) ◽  
pp. 301
Author(s):  
Guanglong Hu ◽  
Yiheng Wang ◽  
Yan Wang ◽  
Shuqi Zheng ◽  
Wenxuan Dong ◽  
...  

Hawthorns (Crataegus L.) are one of the most important processing and table fruits in China, due to their medicinal properties and health benefits. However, the interspecific relationships and evolution history of cultivated Crataegus in China remain unclear. Our previously published data showed C. bretschneideri may be derived from the hybridization of C. pinnatifida with C. maximowiczii, and that introgression occurs between C. hupehensis, C. pinnatifida, and C. pinnatifida var. major. In the present study, chloroplast sequences were used to further elucidate the phylogenetic relationships of cultivated Crataegus native to China. The chloroplast genomes of three cultivated species and one related species of Crataegus were sequenced for comparative and phylogenetic analyses. The four chloroplast genomes of Crataegus exhibited typical quadripartite structures and ranged from 159,607 bp (C. bretschneideri) to 159,875 bp (C. maximowiczii) in length. The plastomes of the four species contained 113 genes consisting of 79 protein-coding genes, 30 tRNA genes, and 4 rRNA genes. Six hypervariable regions (ndhC-trnV(UAC)-trnM(CAU), ndhA, atpH-atpI, ndhF, trnR(UCU)-atpA, and ndhF-rpl32), 196 repeats, and a total of 386 simple sequence repeats were detected as potential variability makers for species identification and population genetic studies. In the phylogenomic analyses, we also compared the entire chloroplast genomes of three published Crataegus species: C. hupehensis (MW201730.1), C. pinnatifida (MN102356.1), and C. marshallii (MK920293.1). Our phylogenetic analyses grouped the seven Crataegus taxa into two main clusters. One cluster included C. bretschneideri, C. maximowiczii, and C. marshallii, whereas the other included C. hupehensis, C. pinnatifida, and C. pinnatifida var. major. Taken together, our findings indicate that C. maximowiczii is the maternal origin of C. bretschneideri. This work provides further evidence of introgression between C. hupehensis, C. pinnatifida, and C. pinnatifida var. major, and suggests that C. pinnatifida var. major might have been artificially selected and domesticated from hybrid populations, rather than evolved from C. pinnatifida.


Biophysica ◽  
2021 ◽  
Vol 1 (2) ◽  
pp. 87-105
Author(s):  
Akanksha Pandey ◽  
Edward L. Braun

Despite the long history of using protein sequences to infer the tree of life, the potential for different parts of protein structures to retain historical signal remains unclear. We propose that it might be possible to improve analyses of phylogenomic datasets by incorporating information about protein structure. We test this idea using the position of the root of Metazoa (animals) as a model system. We examined the distribution of “strongly decisive” sites (alignment positions that support a specific tree topology) in a dataset comprising >1500 proteins and almost 100 taxa. The proportion of each class of strongly decisive sites in different structural environments was very sensitive to the model used to analyze the data when a limited number of taxa were used but they were stable when taxa were added. As long as enough taxa were analyzed, sites in all structural environments supported the same topology regardless of whether standard tree searches or decisive sites were used to select the optimal tree. However, the use of decisive sites revealed a difference between the support for minority topologies for sites in different structural environments: buried sites and sites in sheet and coil environments exhibited equal support for the minority topologies, whereas solvent-exposed and helix sites had unequal numbers of sites, supporting the minority topologies. This suggests that the relatively slowly evolving buried, sheet, and coil sites are giving an accurate picture of the true species tree and the amount of conflict among gene trees. Taken as a whole, this study indicates that phylogenetic analyses using sites in different structural environments can yield different topologies for the deepest branches in the animal tree of life and that analyzing larger numbers of taxa eliminates this conflict. More broadly, our results highlight the desirability of incorporating information about protein structure into phylogenomic analyses.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Javier Fernández-López ◽  
M. Teresa Telleria ◽  
Margarita Dueñas ◽  
Mara Laguna-Castro ◽  
Klaus Schliep ◽  
...  

AbstractThe use of different sources of evidence has been recommended in order to conduct species delimitation analyses to solve taxonomic issues. In this study, we use a maximum likelihood framework to combine morphological and molecular traits to study the case of Xylodon australis (Hymenochaetales, Basidiomycota) using the locate.yeti function from the phytools R package. Xylodon australis has been considered a single species distributed across Australia, New Zealand and Patagonia. Multi-locus phylogenetic analyses were conducted to unmask the actual diversity under X. australis as well as the kinship relations respect their relatives. To assess the taxonomic position of each clade, locate.yeti function was used to locate in a molecular phylogeny the X. australis type material for which no molecular data was available using morphological continuous traits. Two different species were distinguished under the X. australis name, one from Australia–New Zealand and other from Patagonia. In addition, a close relationship with Xylodon lenis, a species from the South East of Asia, was confirmed for the Patagonian clade. We discuss the implications of our results for the biogeographical history of this genus and we evaluate the potential of this method to be used with historical collections for which molecular data is not available.


Author(s):  
Yuan Fang ◽  
Ernest Tambo ◽  
Jing-Bo Xue ◽  
Yi Zhang ◽  
Xiao-Nong Zhou ◽  
...  

Abstract Gene mutations on target sites can be a valuable indicator of the status of insecticide resistance. Jeddah, a global commercial and major port-of-entry city, is bearing the brunt of dengue disease burden in Saudi Arabia. In the current study, six genotypes of three codon combinations (989, 1016, and 1534) were observed on voltage-gated sodium channel (VGSC) gene in Jeddah’s Aedes aegypti population, with PGF/PGC as the dominant one. Two types of introns between exon 20 and 21 on VGSC have been identified for the first time in Ae. aegypti in Saudi Arabia. Statistical and phylogenetic analyses showed that the intron type was significantly associated with the 1016 allele and may reflect the history of insecticide treatment in different continents. In addition, fixation of the L1014F allele on VGSC and G119S on acetylcholinesterase 1 gene was detected in local Culex quinquefasciatus populations, with frequencies of 95.24 and 100%, respectively. To the best of our knowledge, this is the first report of resistant-associated mutations in field-caught Cx. quinquefasciatus in Saudi Arabia. The high prevalence of insecticide resistance gene mutations in local primary mosquito vector species highlights the urgent need to carry out comprehensive insecticide resistance surveillance in Saudi Arabia.


Author(s):  
Sergio A Muñoz-Gómez ◽  
Keira Durnin ◽  
Laura Eme ◽  
Christopher Paight ◽  
Christopher E Lane ◽  
...  

Abstract A most interesting exception within the parasitic Apicomplexa is Nephromyces, an extracellular, probably mutualistic, endosymbiont found living inside molgulid ascidian tunicates (i.e., sea squirts). Even though Nephromyces is now known to be an apicomplexan, many other questions about its nature remain unanswered. To gain further insights into the biology and evolutionary history of this unusual apicomplexan, we aimed to (1) find the precise phylogenetic position of Nephromyces within the Apicomplexa, (2) search for the apicoplast genome of Nephromyces, and (3) infer the major metabolic pathways in the apicoplast of Nephromyces. To do this, we sequenced a metagenome and a metatranscriptome from the molgulid renal sac, the specialized habitat where Nephromyces thrives. Our phylogenetic analyses of conserved nucleus-encoded genes robustly suggest that Nephromyces is a novel lineage sister to the Hematozoa, which comprises both the Haemosporidia (e.g., Plasmodium) and the Piroplasmida (e.g., Babesia and Theileria). Furthermore, a survey of the renal sac metagenome revealed 13 small contigs that closely resemble the genomes of the non-photosynthetic reduced plastids, or apicoplasts, of other apicomplexans. We show that these apicoplast genomes correspond to a diverse set of most closely related but genetically divergent Nephromyces lineages that co-inhabit a single tunicate host. In addition, the apicoplast of Nephromyces appears to have retained all biosynthetic pathways inferred to have been ancestral to parasitic apicomplexans. Our results shed light on the evolutionary history of the only probably mutualistic apicomplexan known, Nephromyces, and provide context for a better understanding of its life style and intricate symbiosis.


2010 ◽  
Vol 60 (4) ◽  
pp. 449-465
Author(s):  
Wen Longying ◽  
Zhang Lixun ◽  
An Bei ◽  
Luo Huaxing ◽  
Liu Naifa ◽  
...  

AbstractWe have used phylogeographic methods to investigate the genetic structure and population history of the endangered Himalayan snowcock (Tetraogallus himalayensis) in northwestern China. The mitochondrial cytochrome b gene was sequenced of 102 individuals sampled throughout the distribution range. In total, we found 26 different haplotypes defined by 28 polymorphic sites. Phylogenetic analyses indicated that the samples were divided into two major haplogroups corresponding to one western and one eastern clade. The divergence time between these major clades was estimated to be approximately one million years. An analysis of molecular variance showed that 40% of the total genetic variability was found within local populations, 12% among populations within regional groups and 48% among groups. An analysis of the demographic history of the populations suggested that major expansions have occurred in the Himalayan snowcock populations and these correlate mainly with the first and the second largest glaciations during the Pleistocene. In addition, the data indicate that there was a population expansion of the Tianshan population during the uplift of the Qinghai-Tibet Plateau, approximately 2 million years ago.


Viruses ◽  
2018 ◽  
Vol 10 (8) ◽  
pp. 430 ◽  
Author(s):  
Miroslav Glasa ◽  
Katarína Šoltys ◽  
Lukáš Predajňa ◽  
Nina Sihelská ◽  
Slavomíra Nováková ◽  
...  

In recent years, the accumulated molecular data of Turnip mosaic virus (TuMV) isolates from various hosts originating from different parts of the world considerably helped to understand the genetic complexity and evolutionary history of the virus. In this work, four complete TuMV genomes (HC9, PK1, MS04, MS15) were characterised from naturally infected cultivated and wild-growing Papaver spp., hosts from which only very scarce data were available previously. Phylogenetic analyses showed the affiliation of Slovak Papaver isolates to the world-B and basal-B groups. The PK1 isolate showed a novel intra-lineage recombination pattern, further confirming the important role of recombination in the shaping of TuMV genetic diversity. Biological assays indicated that the intensity of symptoms in experimentally inoculated oilseed poppy are correlated to TuMV accumulation level in leaves. This is the first report of TuMV in poppy plants in Slovakia.


2002 ◽  
Vol 76 (7) ◽  
pp. 3382-3387 ◽  
Author(s):  
Marilyn J. Roossinck

ABSTRACT Cucumber mosaic virus (CMV) is an RNA plant virus with a tripartite genome and an extremely broad host range. Previous evolutionary analyses with the coat protein (CP) and 5′ nontranslated region (NTR) of RNA 3 suggested subdivision of the virus into three groups, subgroups IA, IB, and II. In this study 15 strains of CMV whose nucleotide sequences have been determined were used for a complete phylogenetic analysis of the virus. The trees estimated for open reading frames (ORFs) located on the different RNAs were not congruent and did not completely support the subgrouping indicated by the CP ORF, indicating that different RNAs had independent evolutionary histories. This is consistent with a reassortment mechanism playing an important role in the evolution of the virus. The evolutionary trees of the 1a and 3a ORFs were more compact and displayed more branching than did those of the 2a and CP ORFs. This may reflect more rigid host-interactive constraints exerted on the 1a and 3a ORFs. In addition, analysis of the 3′ NTR that is conserved among all RNAs indicated that evolutionary constraints on this region are specific to the RNA component rather than the virus isolate. This indicates that functions other than replication are encoded in the 3′ NTR. Reassortment may have led to the genetic diversity found among CMV strains and contributed to its enormous evolutionary success.


2021 ◽  
pp. 1-28
Author(s):  
Yoshimasa Kumekawa ◽  
Haruka Fujimoto ◽  
Osamu Miura ◽  
Ryo Arakawa ◽  
Jun Yokoyama ◽  
...  

Abstract Harvestmen (Arachnida: Opiliones) are soil animals with extremely low dispersal abilities that experienced allopatric differentiation. To clarify the morphological and phylogenetic differentiation of the endemic harvestman Zepedanulus ishikawai (Suzuki, 1971) (Laniatores: Epedanidae) in the southern part of the Ryukyu Archipelago, we conducted molecular phylogenetic analyses and divergence time estimates based on CO1 and 16S rRNA sequences of mtDNA, the 28S rRNA sequence of nrDNA, and the external morphology. A phylogenetic tree based on mtDNA sequences indicated that individuals of Z. ishikawai were monophyletic and were divided into clade I and clade II. This was supported by the nrDNA phylogenetic tree. Although clades I and II were distributed sympatrically on all three islands examined (Ishigaki, Iriomote, and Yonaguni), heterogeneity could not be detected by polymerase chain reaction–restriction fragment length polymorphism of nrDNA, indicating that clades I and II do not have a history of hybridisation. Also, several morphological characters differed significantly between individuals of clade I and clade II. The longstanding isolation of the southern Ryukyus from the surrounding islands enabled estimation of the original morphological characters of both clades of Z. ishikawai.


2021 ◽  
Author(s):  
Caitlin Cherryh ◽  
Bui Quang Minh ◽  
Rob Lanfear

AbstractMost phylogenetic analyses assume that the evolutionary history of an alignment (either that of a single locus, or of multiple concatenated loci) can be described by a single bifurcating tree, the so-called the treelikeness assumption. Treelikeness can be violated by biological events such as recombination, introgression, or incomplete lineage sorting, and by systematic errors in phylogenetic analyses. The incorrect assumption of treelikeness may then mislead phylogenetic inferences. To quantify and test for treelikeness in alignments, we develop a test statistic which we call the tree proportion. This statistic quantifies the proportion of the edge weights in a phylogenetic network that are represented in a bifurcating phylogenetic tree of the same alignment. We extend this statistic to a statistical test of treelikeness using a parametric bootstrap. We use extensive simulations to compare tree proportion to a range of related approaches. We show that tree proportion successfully identifies non-treelikeness in a wide range of simulation scenarios, and discuss its strengths and weaknesses compared to other approaches. The power of the tree-proportion test to reject non-treelike alignments can be lower than some other approaches, but these approaches tend to be limited in their scope and/or the ease with which they can be interpreted. Our recommendation is to test treelikeness of sequence alignments with both tree proportion and mosaic methods such as 3Seq. The scripts necessary to replicate this study are available at https://github.com/caitlinch/treelikeness


Sign in / Sign up

Export Citation Format

Share Document