scholarly journals The transcriptional dynamics of two filmy ferns from Hymenophyllaceae with different niche preferences unravel key aspects of their desiccation tolerance and vertical distribution along host trees

2017 ◽  
Author(s):  
Giovanni Larama ◽  
Enrique Ostria-Gallardo ◽  
Graciela Berrios ◽  
Ana Gutierrez ◽  
Ingo Ensminger ◽  
...  

ABSTRACTFerns from the Hymenophyllaceae family are one of the main components of the epiphytic species diversity in the Chilean temperate rain forest. Having membranous fronds of a single layer of cells, they show a poikilohydric strategy most typical from bryophytes. Although Hymenophyllaceae species shows the ability to tolerate desiccation, there are interspecific differences in their water loss kinetic. Counter-intuitively, those species that have rapid desiccation kinetic are able to reach higher host height and tolerate higher light exposure and vapor pressure deficit. Therefore, what are the mechanisms (constitutive and/or induced) responsible of the desiccation tolerance in this fern family? As this primitive fern family is closely related with mosses, it can be hypothesized that desiccation tolerance in this particular group would be associated with constitutive features rather than induced responses during dehydration. However, the inter-specific differences in water loss and vertical distribution would be associated to different degrees of induction either within the dehydration or rehydration phases. We applied an ecophysiological transcriptomic approach to study the dynamic of gene expression in two species of filmy ferns with contrasting desiccation kinetics and vertical distribution on the host tree. Our analysis identified commonalities and differences in gene regulation, and key genes correlated with the fronds hydration state, providing the patterns of gene expression responding to microenvironmental signals and behind the physiology of their resurrection strategy

2014 ◽  
Vol 4 (1) ◽  
pp. 29-39
Author(s):  
Wendy Pojmann

Migrant women’s associations in Italy did not simply emerge from informal networks. The Filipino and Cape Verdean women’s associations in Rome are examples of the results of multiple factors that contributed to the strategy of self-organization established by migrant women with the intention of empowering themselves. An awareness of their unique position as women from mostly-female migrant groups, a lack of institutional bodies prepared to assist them, and the leadership of individual women were key aspects in the formation of the first migrant women’s associations in Rome. Gender and nationality were the main components of migrant women’s organizing in the first mostly-female migrant groups. 


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Dwi Ariyanti ◽  
Kazunori Ikebukuro ◽  
Koji Sode

Abstract Background The development of multiple gene expression systems, especially those based on the physical signals, such as multiple color light irradiations, is challenging. Complementary chromatic acclimation (CCA), a photoreversible process that facilitates the control of cellular expression using light of different wavelengths in cyanobacteria, is one example. In this study, an artificial CCA systems, inspired by type III CCA light-regulated gene expression, was designed by employing a single photosensor system, the CcaS/CcaR green light gene expression system derived from Synechocystis sp. PCC6803, combined with G-box (the regulator recognized by activated CcaR), the cognate cpcG2 promoter, and the constitutively transcribed promoter, the PtrcΔLacO promoter. Results One G-box was inserted upstream of the cpcG2 promoter and a reporter gene, the rfp gene (green light-induced gene expression), and the other G-box was inserted between the PtrcΔLacO promoter and a reporter gene, the bfp gene (red light-induced gene expression). The Escherichia coli transformants with plasmid-encoded genes were evaluated at the transcriptional and translational levels under red or green light illumination. Under green light illumination, the transcription and translation of the rfp gene were observed, whereas the expression of the bfp gene was repressed. Under red light illumination, the transcription and translation of the bfp gene were observed, whereas the expression of the rfp gene was repressed. During the red and green light exposure cycles at every 6 h, BFP expression increased under red light exposure while RFP expression was repressed, and RFP expression increased under green light exposure while BFP expression was repressed. Conclusion An artificial CCA system was developed to realize a multiple gene expression system, which was regulated by two colors, red and green lights, using a single photosensor system, the CcaS/CcaR system derived from Synechocystis sp. PCC6803, in E. coli. The artificial CCA system functioned repeatedly during red and green light exposure cycles. These results demonstrate the potential application of this CCA gene expression system for the production of multiple metabolites in a variety of microorganisms, such as cyanobacteria.


2016 ◽  
Vol 283 (1837) ◽  
pp. 20160841 ◽  
Author(s):  
Krista K. Ingram ◽  
Deborah M. Gordon ◽  
Daniel A. Friedman ◽  
Michael Greene ◽  
John Kahler ◽  
...  

Task allocation among social insect workers is an ideal framework for studying the molecular mechanisms underlying behavioural plasticity because workers of similar genotype adopt different behavioural phenotypes. Elegant laboratory studies have pioneered this effort, but field studies involving the genetic regulation of task allocation are rare. Here, we investigate the expression of the foraging gene in harvester ant workers from five age- and task-related groups in a natural population, and we experimentally test how exposure to light affects foraging expression in brood workers and foragers. Results from our field study show that the regulation of the foraging gene in harvester ants occurs at two time scales: levels of foraging mRNA are associated with ontogenetic changes over weeks in worker age, location and task, and there are significant daily oscillations in foraging expression in foragers. The temporal dissection of foraging expression reveals that gene expression changes in foragers occur across a scale of hours and the level of expression is predicted by activity rhythms: foragers have high levels of foraging mRNA during daylight hours when they are most active outside the nests. In the experimental study, we find complex interactions in foraging expression between task behaviour and light exposure. Oscillations occur in foragers following experimental exposure to 13 L : 11 D (LD) conditions, but not in brood workers under similar conditions. No significant differences were seen in foraging expression over time in either task in 24 h dark (DD) conditions. Interestingly, the expression of foraging in both undisturbed field and experimentally treated foragers is also significantly correlated with the expression of the circadian clock gene, cycle . Our results provide evidence that the regulation of this gene is context-dependent and associated with both ontogenetic and daily behavioural plasticity in field colonies of harvester ants. Our results underscore the importance of assaying temporal patterns in behavioural gene expression and suggest that gene regulation is an integral mechanism associated with behavioural plasticity in harvester ants.


Endocrinology ◽  
2008 ◽  
Vol 149 (12) ◽  
pp. 6336-6342 ◽  
Author(s):  
Wenqiang Pang ◽  
Chunying Li ◽  
Yue Zhao ◽  
Shiming Wang ◽  
Wei Dong ◽  
...  

Environmental light is involved in the regulation of photochemical reaction in mouse retina. It remains unclear whether light-mediated increase in all-trans retinoic acid (ATRA) synthesis in retina will result in altering the circulatory levels of ATRA and regulating downstream gene expression and physiological function. Here we showed circulatory levels of ATRA decreased in mice under constant darkness and elevated by light exposure. Fat gene pancreatic lipase-related protein 2 (mPlrp2) and its partner procolipase (mClps), but not hepatic lipase (mHl), activated in livers for responding to lack of light illuminating. Light-triggered alterations in circulatory ATRA levels regulated ecto-5′-nucleotidase gene expression by retinoic acid receptor retinoic acid receptor-α and modulated 5′-AMP levels in blood and were associated with mPlrp2 and mClps expression in the livers. Mice deficient in adenosine receptors displayed mPlrp2 and mClps expression in livers under 12-h light, 12-h dark cycles. Caffeine blocked adenosine receptors and induced hepatic mPlrp2 and mClps expression in wild-type mice. Mice activated in hepatic mPlrp2 and mClps expression lowered hepatic and serum lipid levels and markedly elevated circulatory levels of all-trans retinol. Our results suggest environmental light influence hepatic lipid homeostasis by light-modulated retinoic acid signaling associated with mPlrp2 and mClps gene expression in livers.


Diversity ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 384
Author(s):  
Amanda N. Cass ◽  
Ashley Elias ◽  
Madeline L. Fudala ◽  
Benjamin D. Knick ◽  
Marcus C. Davis

The transformation of paired fins into tetrapod limbs is one of the most intensively scrutinized events in animal evolution. Early anatomical and embryological datasets identified distinctive morphological regions within the appendage and posed hypotheses about how the loss, gain, and transformation of these regions could explain the observed patterns of both extant and fossil appendage diversity. These hypotheses have been put to the test by our growing understanding of patterning mechanisms that regulate formation of the appendage axes, comparisons of gene expression data from an array of phylogenetically informative taxa, and increasingly sophisticated and elegant experiments leveraging the latest molecular approaches. Together, these data demonstrate the remarkable conservation of developmental mechanisms, even across phylogenetically and morphologically disparate taxa, as well as raising new questions about the way we view homology, evolutionary novelty, and the often non-linear connection between morphology and gene expression. In this review, we present historical hypotheses regarding paired fin evolution and limb origins, summarize key aspects of central appendage patterning mechanisms in model and non-model species, address how modern comparative developmental data interface with our understanding of appendage anatomy, and highlight new approaches that promise to provide new insight into these well-traveled questions.


Author(s):  
Markus Jobst ◽  
Jürgen Döllner ◽  
Olaf Lubanski

Planning situations are commonly managed by intensive discussions between all stakeholders. Virtual 3D city models enhance these communication procedures with additional visualization possibilities (in opposite to physical models), which support spatial knowledge structuring and human learning mechanisms. This chapter discusses key aspects of virtual 3D city creation, main components of virtual environments and the framework for an efficient communication. It also explores future research for the creation of virtual 3D environments.


Genes ◽  
2019 ◽  
Vol 10 (6) ◽  
pp. 465 ◽  
Author(s):  
Jiawei Wen ◽  
Zhibin Zhang ◽  
Lei Gong ◽  
Hongwei Xun ◽  
Juzuo Li ◽  
...  

Pleurotus tuoliensis (Pt) and P. eryngii var. eryngii (Pe) are important edible mushrooms. The epigenetic and gene expression signatures characterizing major developmental transitions in these two mushrooms remain largely unknown. Here, we report global analyses of DNA methylation and gene expression in both mushrooms across three major developmental transitions, from mycelium to primordium and to fruit body, by whole-genome bisulfite sequencing (WGBS) and RNA-seq-based transcriptome profiling. Our results revealed that in both Pt and Pe the landscapes of methylome are largely stable irrespective of genomic features, e.g., in both protein-coding genes and transposable elements (TEs), across the developmental transitions. The repressive impact of DNA methylation on expression of a small subset of genes is likely due to TE-associated effects rather than their own developmental dynamics. Global expression of gene orthologs was also broadly conserved between Pt and Pe, but discernible interspecific differences exist especially at the fruit body formation stage, and which are primarily due to differences in trans-acting factors. The methylome and transcriptome repertories we established for the two mushroom species may facilitate further studies of the epigenetic and transcriptional regulatory mechanisms underpinning gene expression during development in Pleurotus and related genera.


2005 ◽  
Vol 288 (4) ◽  
pp. C913-C920 ◽  
Author(s):  
Hideo Akiyama ◽  
Toru Tanaka ◽  
Hiroshi Doi ◽  
Hiroyoshi Kanai ◽  
Toshitaka Maeno ◽  
...  

Neovascularization of the retina and choroids is the pathological hallmark of many retinopathies, but its molecular mechanisms remain unclear. Vascular endothelial growth factor (VEGF), which is induced by hypoxia or cytokines, plays a critical role in the abnormal growth of blood vessels. In this study, we report that visible light exposure induces VEGF gene expression in retinoblastoma Y79 cells. Fluorescent light exposure (700 lux, wavelength 400∼740 nm) caused a significant increase in VEGF transcripts and protein levels. Such an induction seemed to be specific to certain cells, including photoreceptor cells, because light-induced VEGF expression was not observed in either nontransformed cells, such as retinal pigment epithelium cells, and bovine aortic endothelial cells or transformed cells, such as CV-1 and HepG2 cells. Pertussis toxin and guanosine 5′-[β-thio]diphosphate, specific inhibitors for rhodopsin-associated G protein, blunted this induction. Progressive deletion and site-specific mutation analyses indicate that light stimulation increases VEGF promoter activity through G+C-rich sequence, which is proven by Sp1 binding sites by supershift assays. Electrophoretic mobility shift assays show that light stimulation increases Sp1 binding. Synthetic retinoic acid receptor-α (RARα) antagonist completely abrogated light-mediated increase in VEGF expression. Transfection of Y79 cells with dominant negative mutant of RARα significantly attenuated the light-mediated induction of VEGF promoter activity. In conclusion, our data indicate that light exposure increases VEGF expression through the mechanisms involving activation of Sp1 and RARα signaling in Y79 cells. This study provides new insight into the role of visible light in the transcription and induction of VEGF gene expression.


Sign in / Sign up

Export Citation Format

Share Document